Skip to main content

Image Analyses

  • Chapter
  • First Online:
  • 1019 Accesses

Abstract

Technological advancements in imaging have revolutionized noninvasive imaging, enabling improvements in diagnosis and prognosis of lung diseases in general and infectious lung diseases in particular. In parallel to these imaging developments, there have been important improvements in radiological image analysis techniques that provide accurate quantifiable information to help clinicians in their diagnostic decisions. Current quantitative image analysis approaches have some limitations, and novel image analysis techniques could provide automated and quantitative information that could be even more beneficial for the clinicians.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Foster, B., et al., Segmentation of PET images for computer-aided functional quantification of tuberculosis in small animal models. IEEE Trans Biomed Eng, 2014. 61(3): p. 711-24.

    Article  PubMed  Google Scholar 

  2. Martinez, C.H., et al., Relationship between quantitative CT metrics and health status and BODE in chronic obstructive pulmonary disease. 2012. 67(5): p. 399-406.

    Google Scholar 

  3. Brightling, C.E., et al., Lung damage and airway remodelling in severe asthma. 2011. 42(5): p. 638-649.

    Google Scholar 

  4. Bayouth, J.E., et al., Image-based biomarkers in clinical practice. Semin Radiat Oncol, 2011. 21(2): p. 157-66.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Galban, C.J., et al., The parametric response map is an imaging biomarker for early cancer treatment outcome. 2009. 15(5): p. 572-576.

    Google Scholar 

  6. Bagci, U., et al., Computer-assisted detection of infectious lung diseases: a review. Comput Med Imaging Graph, 2012. 36(1): p. 72-84.

    Google Scholar 

  7. Mansoor, A., et al., Segmentation and Image Analysis of Abnormal Lungs at CT: Current Approaches, Challenges, and Future Trends. Radiographics, 2015. 35(4): p. 1056-76.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mansoor, A., et al., A generic approach to pathological lung segmentation. IEEE Trans Med Imaging, 2014. 33(12): p. 2293-310.

    Article  PubMed  Google Scholar 

  9. Sonka, M., W. Park, and E.A. Hoffman, Rule-based detection of intrathoracic airway trees. IEEE Trans Med Imaging, 1996. 15(3): p. 314-26.

    Article  CAS  PubMed  Google Scholar 

  10. Aykac, D., et al., Segmentation and analysis of the human airway tree from three-dimensional X-ray CT images. IEEE Trans Med Imaging, 2003. 22(8): p. 940-50.

    Article  PubMed  Google Scholar 

  11. Lo, P., et al., Vessel-guided airway tree segmentation: A voxel classification approach. Med Image Anal, 2010. 14(4): p. 527-38.

    Article  PubMed  Google Scholar 

  12. Xu, Z., et al., A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT. Med Image Anal, 2015. 24(1): 1-17.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mansoor, A., U. Bagci, and D.J. Mollura, Optimally stabilized PET image denoising using trilateral filtering. Med Image Comput Comput Assist Interv, 2014. 17(Pt 1): p. 130-7.

    PubMed  Google Scholar 

  14. Xu, Z., et al., Segmentation based denoising of PET images: an iterative approach via regional means and affinity propagation. Med Image Comput Comput Assist Interv, 2014. 17(Pt 1): p. 698-705.

    Google Scholar 

  15. Bagci, U. and D.J. Mollura, Denoising PET images using singular value thresholding and Stein’s unbiased risk estimate. Med Image Comput Comput Assist Interv, 2013. 16(Pt 3): p. 115-22.

    PubMed  PubMed Central  Google Scholar 

  16. Bagci, U., et al., Predicting future morphological changes of lesions from radiotracer uptake in 18F-FDG-PET images. PLoS One, 2013. 8(2): p. e57105.

    Google Scholar 

  17. Camp, J.V., et al., Lower Respiratory Tract Infection of the Ferret by 2009 H1N1 Pandemic Influenza A Virus Triggers Biphasic, Systemic, and Local Recruitment of Neutrophils. J Virol, 2015. 89(17): p. 8733-48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kubler, A., et al., Mycobacterium tuberculosis dysregulates MMP/TIMP balance to drive rapid cavitation and unrestrained bacterial proliferation. J Pathol, 2015. 235(3): p. 431-44.

    Article  PubMed  Google Scholar 

  19. Luna, B., et al., In vivo prediction of tuberculosis-associated cavity formation in rabbits. J Infect Dis, 2015. 211(3): p. 481-5.

    Article  CAS  PubMed  Google Scholar 

  20. Foster, B., et al., A review on segmentation of positron emission tomography images. Comput Biol Med, 2014. 50: p. 76-96.

    Article  PubMed  Google Scholar 

  21. Bagci, U. and L. Bai, Automatic best reference slice selection for smooth volume reconstruction of a mouse brain from histological images. IEEE Trans Med Imaging, 2010. 29(9): p. 1688-96.

    Article  PubMed  Google Scholar 

  22. Zhang, Z., et al., Multi-modality medical image registration using support vector machines. Conf Proc IEEE Eng Med Biol Soc, 2005. 6: p. 6293-6.

    PubMed  Google Scholar 

  23. Cunliffe, A.R., et al., Effect of deformable registration on the dose calculated in radiation therapy planning CT scans of lung cancer patients. Med Phys, 2015. 42(1): p. 391-9.

    Google Scholar 

  24. Bagci, U., et al., A computational pipeline for quantification of pulmonary infections in small animal models using serial PET-CT imaging. EJNMMI Res, 2013. 3(1): p. 55.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Murawski, A.M., et al., Imaging the evolution of reactivation pulmonary tuberculosis in mice using 18F-FDG PET. J Nucl Med, 2014. 55(10): p. 1726-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vidal, C., et al., Template Registration with Missing Parts: Application to the Segmentation of M. Tuberculosis Infected Lungs. 2009 Ieee International Symposium on Biomedical Imaging: From Nano to Macro, Vols 1 and 2, 2009: p. 718-721.

    Google Scholar 

  27. Vidal, C., et al. Incorporating user input in template-based segmentation. in Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on. 2011.

    Google Scholar 

  28. Beg, M.F., et al., Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision, 2005. 61(2): p. 139-157.

    Article  Google Scholar 

  29. Chen, R.Y., et al., PET/CT imaging correlates with treatment outcome in patients with multidrug-resistant tuberculosis. Sci Transl Med, 2014. 6(265): p. 265ra166.

    Google Scholar 

  30. Salazar-Austin, N., et al., Extensively drug-resistant tuberculosis in a young child after travel to India. Lancet Infect Dis, 2015. 15(12): p. 1485-91.

    Google Scholar 

  31. Hoffman, E.A., et al., Characterization of the interstitial lung diseases via density-based and texture-based analysis of computed tomography images of lung structure and function. Acad Radiol, 2003. 10(10): p. 1104-18.

    Article  PubMed  Google Scholar 

  32. Gillies, R.J., P.E. Kinahan, and H. Hricak, Radiomics: Images Are More than Pictures, They Are Data. Radiology, 2016. 278(2): p. 563-77.

    Article  PubMed  Google Scholar 

  33. Szigeti, K., et al., Radiomics-based differentiation of lung disease models generated by polluted air based on X-ray computed tomography data. BMC Med Imaging, 2016. 16: p. 14.

    Google Scholar 

  34. Cheng, J.Z., et al., Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans. Sci Rep, 2016. 6: p. 24454.

    Google Scholar 

  35. LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. Nature, 2015. 521(7553): p. 436-44.

    Article  CAS  PubMed  Google Scholar 

  36. Buty, M., et al. Characterization of Lung Nodule Malignancy Using Hybrid Shape and Appearance Features. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 2016. Springer International Publishing.

    Google Scholar 

  37. Gao, M., et al., Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 2016: p. 1-6.

    Google Scholar 

  38. Jamar, F., et al., EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J Nucl Med, 2013. 54(4): p. 647-58.

    Article  PubMed  Google Scholar 

  39. Glaudemans, A.W., et al., Molecular imaging of infectious and inflammatory diseases: a terra incognita. J Nucl Med, 2015. 56(5): p. 659-61.

    Article  PubMed  Google Scholar 

  40. Wang, L., et al., Evaluation of candidate vaccine approaches for MERS-CoV. Nat Commun, 2015. 6: p. 7712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Andreu, N., A. Zelmer, and S. Wiles, Noninvasive biophotonic imaging for studies of infectious disease. FEMS Microbiol Rev, 2011. 35(2): p. 360-94.

    Article  CAS  PubMed  Google Scholar 

  42. Crepin, V.F., et al., Citrobacter rodentium mouse model of bacterial infection. Nat Protoc, 2016. 11(10): p. 1851-76.

    Article  CAS  PubMed  Google Scholar 

  43. Jorgensen, N.P., et al., Cholinergic PET imaging in infections and inflammation using 11C-donepezil and 18F-FEOBV. Eur J Nucl Med Mol Imaging, 2016.

    Google Scholar 

  44. Heuker, M., et al., Preclinical studies and prospective clinical applications for bacteria-targeted imaging: the future is bright. Clin Transl Imaging, 2016. 4: p. 253-264.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Vilche, M., et al., (6)(8)Ga-NOTA-UBI-29-41 as a PET Tracer for Detection of Bacterial Infection. J Nucl Med, 2016. 57(4): p. 622-7.

    Google Scholar 

  46. Carles, M., et al., Evaluation of PET texture features with heterogeneous phantoms: complementarity and effect of motion and segmentation method. Phys Med Biol, 2016. 62(2): p. 652-668.

    Article  PubMed  Google Scholar 

  47. Desseroit, M.C., et al., Reliability of PET/CT shape and heterogeneity features in functional and morphological components of Non-Small Cell Lung Cancer tumors: a repeatability analysis in a prospective multi-center cohort. J Nucl Med, 2016.

    Google Scholar 

  48. Chan, S.C., et al., Tumor heterogeneity measured on F-18 fluorodeoxyglucose positron emission tomography/computed tomography combined with plasma Epstein-Barr Virus load predicts prognosis in patients with primary nasopharyngeal carcinoma. Laryngoscope, 2017. 127(1): p. E22-E28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulas Bagci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Xu, Z., Papadakis, G.Z., Mollura, D.J., Bagci, U. (2017). Image Analyses. In: Jain, S. (eds) Imaging Infections . Springer, Cham. https://doi.org/10.1007/978-3-319-54592-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54592-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54590-5

  • Online ISBN: 978-3-319-54592-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics