Skip to main content

Biodistribution and Pharmacokinetics of Antimicrobials

  • Chapter
  • First Online:
Imaging Infections

Abstract

Inadequate drug concentrations in target tissues can lead to treatment failure and/or selection of drug-resistant organisms. Additionally, altered pharmacokinetics in diseased patients may elevate tissue drug levels leading to organ toxicity or failure. A major advantage of PET-based bioimaging is its ability to measure in situ biodistribution of antimicrobials in real time and simultaneously in multiple organ system/compartments in live animals, with relatively unaltered physiology. This technology overcomes some fundamental limitations of current methodologies and could provide detailed preclinical data for appropriate dosing of new and existing antimicrobials. Such tracers could also enable the first-in-human clinical (phase 0) studies that are recognized by the US Food and Drug Administration to support Investigational New Drug Applications (FDA, Guidance for Industry, Investigators, and Reviewers: Exploratory IND Studies, http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm078933.pdf, 2012). Human subject safety may be improved by using a PET tracer microdosing approach in early drug development which could eliminate the development of drugs with an unfavorable pharmacokinetic profiles and potential toxicities at higher doses. The approach can be extended to drug-drug interaction studies and to vulnerable populations, such as hepatically or renally impaired patients. Finally, PET tracers could also be adapted to study pharmacogenetics or personalized medicine approaches in the practice of medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keberle, H., H. Meyer-Brunot, and K. Schmid, Pharmacokinetic and metabolic studies with labeled rifamycin antibiotics. Antimicrob Agents Chemother (Bethesda), 1966. 6: p. 365-70.

    Google Scholar 

  2. Rudin, M. and R. Weissleder, Molecular imaging in drug discovery and development. Nat Rev Drug Discov, 2003. 2(2): p. 123-31.

    Article  CAS  PubMed  Google Scholar 

  3. Bauer, M., C.C. Wagner, and O. Langer, Microdosing studies in humans: the role of positron emission tomography. Drugs R D, 2008. 9(2): p. 73-81.

    Article  CAS  PubMed  Google Scholar 

  4. Bergstrom, M., A. Grahnen, and B. Langstrom, Positron emission tomography microdosing: a new concept with application in tracer and early clinical drug development. Eur J Clin Pharmacol, 2003. 59(5-6): p. 357-66.

    Article  PubMed  Google Scholar 

  5. Wollmer, P., et al., Measurement of pulmonary erythromycin concentration in patients with lobar pneumonia by means of positron tomography. Lancet, 1982. 2(8312): p. 1361-4.

    Article  CAS  PubMed  Google Scholar 

  6. Britton, K.E., et al., Imaging bacterial infection with (99m)Tc-ciprofloxacin (Infecton). J Clin Pathol, 2002. 55(11): p. 817-23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sonmezoglu, K., et al., Usefulness of 99mTc-ciprofloxacin (infecton) scan in diagnosis of chronic orthopedic infections: comparative study with 99mTc-HMPAO leukocyte scintigraphy. J Nucl Med, 2001. 42(4): p. 567-74.

    CAS  PubMed  Google Scholar 

  8. Siaens, R.H., et al., Synthesis and comparison of 99mTc-enrofloxacin and 99mTc-ciprofloxacin. J Nucl Med, 2004. 45(12): p. 2088-94.

    CAS  PubMed  Google Scholar 

  9. Brunner, M., et al., [18F]Ciprofloxacin, a new positron emission tomography tracer for noninvasive assessment of the tissue distribution and pharmacokinetics of ciprofloxacin in humans. Antimicrob Agents Chemother, 2004. 48(10): p. 3850-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Langer, O., et al., In vitro and in vivo evaluation of [18F]ciprofloxacin for the imaging of bacterial infections with PET. Eur J Nucl Med Mol Imaging, 2005. 32(2): p. 143-50.

    Article  CAS  PubMed  Google Scholar 

  11. Langer, O., et al., Combined PET and microdialysis for in vivo assessment of intracellular drug pharmacokinetics in humans. J Nucl Med, 2005. 46(11): p. 1835-41.

    CAS  PubMed  Google Scholar 

  12. Fischman, A.J., et al., Pharmacokinetics of 18F-labeled fleroxacin in rabbits with Escherichia coli infections, studied with positron emission tomography. Antimicrob Agents Chemother, 1992. 36(10): p. 2286-92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fischman, A.J., et al., Pharmacokinetics of [18F]fleroxacin in healthy human subjects studied by using positron emission tomography. Antimicrob Agents Chemother, 1993. 37(10): p. 2144-52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fischman, A.J., et al., Pharmacokinetics of [18F]fleroxacin in patients with acute exacerbations of chronic bronchitis and complicated urinary tract infection studied by positron emission tomography. Antimicrob Agents Chemother, 1996. 40(3): p. 659-64.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Jynge, P., et al., In vivo tissue pharmacokinetics by fluorine magnetic resonance spectroscopy: a study of liver and muscle disposition of fleroxacin in humans. Clin Pharmacol Ther, 1990. 48(5): p. 481-9.

    Article  CAS  PubMed  Google Scholar 

  16. Fischman, A.J., et al., Pharmacokinetics of [18F]trovafloxacin in healthy human subjects studied with positron emission tomography. Antimicrob Agents Chemother, 1998. 42(8): p. 2048-54.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fischman, A.J., et al., Pharmacokinetics of 18F-labeled trovafloxacin in normal and Escherichia coli-infected rats and rabbits studied with positron emission tomography. Clin Microbiol Infect, 1997. 3(1): p. 63-72.

    Article  CAS  PubMed  Google Scholar 

  18. Tewson, T.J., et al., The synthesis of fluorine-18 lomefloxacin and its preliminary use in human studies. Nucl Med Biol, 1996. 23(6): p. 767-72.

    Article  CAS  PubMed  Google Scholar 

  19. Auletta, S., et al., Imaging bacteria with radiolabelled quinolones, cephalosporins and siderophores for imaging infection: a systematic review. Clin Transl Imaging, 2016. 4: p. 229-252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaul, A., et al., Preliminary evaluation of technetium-99m-labeled ceftriaxone: infection imaging agent for the clinical diagnosis of orthopedic infection. Int J Infect Dis, 2013. 17(4): p. e263-70.

    Article  CAS  PubMed  Google Scholar 

  21. Liu, L., et al., Radiosynthesis and bioimaging of the tuberculosis chemotherapeutics isoniazid, rifampicin and pyrazinamide in baboons. J Med Chem, 2010. 53(7): p. 2882-91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weinstein, E.A., et al., Noninvasive determination of 2-[18F]-fluoroisonicotinic acid hydrazide pharmacokinetics by positron emission tomography in Mycobacterium tuberculosis-infected mice. Antimicrob Agents Chemother, 2012. 56(12): p. 6284-90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Steingart, K.R., et al., Higher-dose rifampin for the treatment of pulmonary tuberculosis: a systematic review. Int J Tuberc Lung Dis, 2011. 15(3): p. 305-16.

    CAS  PubMed  Google Scholar 

  24. Heemskerk, A.D., et al., Intensified Antituberculosis Therapy in Adults with Tuberculous Meningitis. N Engl J Med, 2016. 374(2): p. 124-34.

    Article  CAS  PubMed  Google Scholar 

  25. DeMarco, V.P., et al., Determination of [11C]rifampin pharmacokinetics within Mycobacterium tuberculosis-infected mice by using dynamic positron emission tomography bioimaging. Antimicrob Agents Chemother, 2015. 59(9): p. 5768-74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, Z., et al., The Biodistribution of 5-[18F]fluoropyrazinamide in Mycobacterium tuberculosis-infected Mice determined by Positron Emission Tomography. PLoS One 2017. (in press).

    Google Scholar 

  27. Fischman, A.J., et al., Pharmacokinetics of 18F-labeled fluconazole in rabbits with candidal infections studied with positron emission tomography. J Pharmacol Exp Ther, 1991. 259(3): p. 1351-9.

    CAS  PubMed  Google Scholar 

  28. Fischman, A.J., et al., Pharmacokinetics of 18F-labeled fluconazole in healthy human subjects by positron emission tomography. Antimicrob Agents Chemother, 1993. 37(6): p. 1270-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wareham, D., J. Michael, and S. Das, Advances in bacterial specific imaging. Brazilian Archives of Biology and Technology, 2005. 48: p. 145-152.

    Article  Google Scholar 

  30. Di Mascio, M., et al., Antiretroviral tissue kinetics: in vivo imaging using positron emission tomography. Antimicrob Agents Chemother, 2009. 53(10): p. 4086-95.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Livni, E., et al., Preparation and pharmacokinetics of 11C labeled stavudine (d4T). Nucl Med Biol, 2004. 31(5): p. 613-21.

    Article  CAS  PubMed  Google Scholar 

  32. Tahara, T., et al., A novel (11)C-labeled thymidine analog, [(11)C]AZT, for tumor imaging by positron emission tomography. EJNMMI Res, 2015. 5(1): p. 124.

    Article  PubMed  Google Scholar 

  33. Gambhir, S.S., et al., Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci U S A, 1999. 96(5): p. 2333-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Buursma, A.R., et al., [18F]FHPG positron emission tomography for detection of herpes simplex virus (HSV) in experimental HSV encephalitis. J Virol, 2005. 79(12): p. 7721-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bergstrom, M., et al., Deposition and disposition of [11C] Zanamivir following administration as an intranasal spray. Clinical pharmacokinetics, 1999. 36(1): p. 33-39.

    Article  CAS  PubMed  Google Scholar 

  36. Hatori, A., et al., Biodistribution and metabolism of the anti-influenza drug [11C]oseltamivir and its active metabolite [11C]Ro 64-0802 in mice. Nucl Med Biol, 2009. 36(1): p. 47-55.

    Article  CAS  PubMed  Google Scholar 

  37. Hatori, A., et al., Determination of radioactivity in infant, juvenile and adult rat brains after injection of anti-influenza drug [(1)(1)C]oseltamivir using PET and autoradiography. Neurosci Lett, 2011. 495(3): p. 187-91.

    Article  CAS  PubMed  Google Scholar 

  38. Seki, C., et al., Evaluation of [(11)C]oseltamivir uptake into the brain during immune activation by systemic polyinosine-polycytidylic acid injection: a quantitative PET study using juvenile monkey models of viral infection. EJNMMI Res, 2014. 4: p. 24.

    Article  PubMed  PubMed Central  Google Scholar 

  39. FDA. Guidance for Industry, Investigators, and Reviewers: Exploratory IND Studies. 2006 [cited November 10, 2012; Available from: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm078933.pdf.

  40. Vinjamuri, S., et al., Comparison of 99mTc infecton imaging with radiolabelled white-cell imaging in the evaluation of bacterial infection. Lancet, 1996. 347(8996): p. 233-5.

    Article  CAS  PubMed  Google Scholar 

  41. Shah, S.Q., M.R. Khan, and S.M. Ali, Radiosynthesis of 99mTc (CO) 3-Clinafloxacin Dithiocarbamate and Its Biological Evaluation as a Potential Staphylococcus aureus Infection Radiotracer. Nuclear Medicine and Molecular Imaging, 2011. 45(4): p. 248-254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Motaleb, M., Radiochemical and biological characteristics of 99mTc-difloxacin and 99mTc-pefloxacin for detecting sites of infection. Journal of Labelled Compounds and Radiopharmaceuticals, 2010. 53(3): p. 104-109.

    Article  CAS  Google Scholar 

  43. Siaens, R.H., et al., Synthesis and comparison of 99mTc-enrofloxacin and 99mTc-ciprofloxacin. Journal of Nuclear Medicine, 2004. 45(12): p. 2088-2094.

    CAS  PubMed  Google Scholar 

  44. Shah, S.Q., A.U. Khan, and M.R. Khan, Radiosynthesis and biodistribution of 99m TcN–garenoxacin dithiocarbamate complex a potential infection imaging agent. Journal of Radioanalytical and Nuclear Chemistry, 2011. 288(1): p. 59-64.

    Article  CAS  Google Scholar 

  45. Motaleb, M., et al., Study on the preparation and biological evaluation of 99mTc–gatifloxacin and 99mTc–cefepime complexes. Journal of Radioanalytical and Nuclear Chemistry, 2011. 289(1): p. 57-65.

    Article  CAS  Google Scholar 

  46. Shah, S.Q. and M.R. Khan, Radiolabeling of gemifloxacin with technetium-99m and biological evaluation in artificially Streptococcus pneumoniae infected rats. Journal of Radioanalytical and Nuclear Chemistry, 2011. 288(1): p. 307-312.

    Article  CAS  Google Scholar 

  47. El-ghany, E., et al., Technetium-99m labeling and freeze-dried kit formulation of levofloxacin (L-Flox): a novel agent for detecting sites of infection. Journal of Labelled Compounds and Radiopharmaceuticals, 2007. 50(1): p. 25-31.

    Article  CAS  Google Scholar 

  48. Nayak, D.K., et al., Evaluation of 99mTc(i)-tricarbonyl complexes of fluoroquinolones for targeting bacterial infection. Metallomics, 2012. 4(11): p. 1197-1208.

    Article  CAS  PubMed  Google Scholar 

  49. Motaleb, M.A., Preparation and biodistribution of 99mTc-lomefloxacin and 99mTc-ofloxacin complexes. Journal of Radioanalytical & Nuclear Chemistry, 2007. 272(1): p. 95-99.

    Article  CAS  Google Scholar 

  50. Chattopadhyay, S., et al., Synthesis and evaluation of 99mTc-moxifloxacin, a potential infection specific imaging agent. Applied Radiation and Isotopes, 2010. 68(2): p. 314-316.

    Article  CAS  PubMed  Google Scholar 

  51. Ibrahim, I., M. Motaleb, and K. Attalah, Synthesis and biological distribution of 99m Tc–norfloxacin complex, a novel agent for detecting sites of infection. Journal of radioanalytical and nuclear chemistry, 2010. 285(3): p. 431-436.

    Article  CAS  Google Scholar 

  52. Zhang, S., et al., Synthesis and biodistribution of a novel ((9)(9)m)TcN complex of norfloxacin dithiocarbamate as a potential agent for bacterial infection imaging. Bioconjug Chem, 2011. 22(3): p. 369-75.

    Article  PubMed  Google Scholar 

  53. Erfani, M., et al., 99mTc-tricabonyl labeling of ofloxacin and its biological evaluation in Staphylococcus aureus as an infection imaging agent. Journal of Labelled Compounds and Radiopharmaceuticals, 2013. 56(12): p. 627-631.

    Article  CAS  PubMed  Google Scholar 

  54. Motaleb, M.A. and S.M. Ayoub, Preparation, quality control, and biodistribution of 99mTc-rufloxacin complex as a model for detecting sites of infection. Radiochemistry, 2013. 55(6): p. 610-614.

    Article  CAS  Google Scholar 

  55. Moustapha, M.E., et al., Synthesis and biological evaluation of technetium-sarafloxacin complex for infection imaging. Journal of Radioanalytical and Nuclear Chemistry, 2016. 307(1): p. 699-705.

    Article  CAS  Google Scholar 

  56. Shah, S.Q., A.U. Khan, and M.R. Khan, Radiosynthesis and biological evaluation of 99mTcN-sitafloxacin dithiocarbamate as a potential radiotracer for Staphylococcus aureus infection. Journal of Radioanalytical and Nuclear Chemistry, 2011. 287(3): p. 827-832.

    Article  CAS  Google Scholar 

  57. Qaiser, S.S., A.U. Khan, and M.R. Khan, Synthesis, biodistribution and evaluation of 99mTc-sitafloxacin kit: a novel infection imaging agent. Journal of Radioanalytical and Nuclear Chemistry, 2010. 284(1): p. 189-193.

    Article  CAS  Google Scholar 

  58. Singh, A., et al., 99m labeled sparfloxacin: a specific infection imaging agent. WJ Nucl Med, 2003. 2(2): p. 103-109.

    Google Scholar 

  59. El-Tawoosy, M., Preparation and biological distribution of 99mTc-cefazolin complex, a novel agent for detecting sites of infection. Journal of Radioanalytical and Nuclear Chemistry, 2013. 298(2): p. 1215-1220.

    Article  CAS  Google Scholar 

  60. Motaleb, M., Preparation of 99m Tc-cefoperazone complex, a novel agent for detecting sites of infection. Journal of Radioanalytical and Nuclear Chemistry, 2007. 272(1): p. 167-171.

    Article  CAS  Google Scholar 

  61. Mirshojaei, S., et al., Radio labeling, quality control and biodistribution of 99mTc-cefotaxime as an infection imaging agent. Journal of Radioanalytical and Nuclear Chemistry, 2011. 287(1): p. 21-25.

    Article  CAS  Google Scholar 

  62. Mirshojaei, S.F., M. Erfani, and M. Shafiei, Evaluation of 99mTc-ceftazidime as bacterial infection imaging agent. Journal of Radioanalytical and Nuclear Chemistry, 2013. 298(1): p. 19-24.

    Article  CAS  Google Scholar 

  63. Gomes Barreto, V., et al., [99mTc-ceftizoxime scintigraphy in normal rats and abscess induced rats]. Rev Esp Med Nucl, 2005. 24(5): p. 312-8.

    Article  CAS  PubMed  Google Scholar 

  64. Kaul, A., et al., Preliminary evaluation of technetium-99m-labeled ceftriaxone: infection imaging agent for the clinical diagnosis of orthopedic infection. International Journal of Infectious Diseases, 2013. 17(4): p. e263-e270.

    Article  CAS  PubMed  Google Scholar 

  65. Yurt Lambrecht, F., et al., Evaluation of 99m Tc-Cefuroxime axetil for imaging of inflammation. Journal of Radioanalytical and Nuclear Chemistry, 2008. 277(2): p. 491-494.

    Article  CAS  Google Scholar 

  66. Chattopadhyay, S., et al., Preparation and evaluation of 99mTc-cefuroxime, a potential infection specific imaging agent: A reliable thin layer chromatographic system to delineate impurities from the 99mTc-antibiotic. Applied Radiation and Isotopes, 2012. 70(10): p. 2384-2387.

    Article  CAS  PubMed  Google Scholar 

  67. Sakr, T., M. Motaleb, and I. Ibrahim, 99mTc–meropenem as a potential SPECT imaging probe for tumor hypoxia. Journal of Radioanalytical and Nuclear Chemistry, 2012. 292(2): p. 705-710.

    Article  CAS  Google Scholar 

  68. Sanad, M.H., Labeling and biological evaluation of 99m Tc-azithromycin for infective inflammation diagnosis. Radiochemistry, 2013. 55(5): p. 539-544.

    Article  CAS  Google Scholar 

  69. Borai, E.H., M.H. Sanad, and A.S.M. Fouzy, Optimized chromatographic separation and biological evaluation of 99m Tc-clarithromycin for infective inflammation diagnosis. Radiochemistry, 2016. 58(1): p. 84-91.

    Article  CAS  Google Scholar 

  70. Hina, S., et al., Preparation, biodistribution, and scintigraphic evaluation of (99m)Tc-clindamycin: an infection imaging agent. Appl Biochem Biotechnol, 2014. 174(4): p. 1420-33.

    Article  CAS  PubMed  Google Scholar 

  71. İlem-Özdemir, D., et al., 99mTc-Doxycycline hyclate: a new radiolabeled antibiotic for bacterial infection imaging. Journal of Labelled Compounds and Radiopharmaceuticals, 2013: p. n/a-n/a.

    Google Scholar 

  72. Roohi, S., et al., Synthesis, quality control and biodistribution of 99m Tc-Kanamycin. Journal of radioanalytical and nuclear chemistry, 2006. 267(3): p. 561-566.

    Article  CAS  Google Scholar 

  73. Hagan, P., et al., Comparison of 131I-tetracycline and 67Ga-citrate as abscess localizing agents. Nuklearmedizin Archive, 1977. 16(2): p. 76-78.

    CAS  Google Scholar 

  74. Hina, S., et al., Labeling, quality control and biological evaluation of 99m Tc-vibramycin for infection sites imaging. Bulg Chem Comm, 2015. 47: p. 747-754.

    Google Scholar 

  75. Singh, N. and A. Bhatnagar, Clinical Evaluation of Efficacy of 99mTC -Ethambutol in Tubercular Lesion Imaging. Tuberculosis Research and Treatment, 2010. 2010.

    Google Scholar 

  76. Roohi, S., et al., Direct labeling of isoniazid with technetium-99m for diagnosis of tuberculosis, in Radiochimica Acta. 2006. p. 147.

    Google Scholar 

  77. Amartey, J.K., et al., 2-[(18)F]-fluoroisonicotinic acid hydrazide: biological evaluation in an acute infection model. Appl Radiat Isot, 2004. 60(6): p. 839-43.

    Article  CAS  PubMed  Google Scholar 

  78. Liu, L., et al., Radiosynthesis and Bioimaging of the Tuberculosis Chemotherapeutics Isoniazid, Rifampicin and Pyrazinamide in Baboons. Journal of Medicinal Chemistry, 2010. 53(7): p. 2882-2891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shah, S.Q., A.U. Khan, and M.R. Khan, Radiosynthesis and biodistribution of 99mTc-rifampicin: A novel radiotracer for in-vivo infection imaging. Applied Radiation and Isotopes, 2010. 68(12): p. 2255-2260.

    Article  CAS  PubMed  Google Scholar 

  80. Tsopelas, C., et al., 99mTc-alafosfalin: an antibiotic peptide infection imaging agent. Nucl Med Biol, 2003. 30(2): p. 169-75.

    Article  CAS  PubMed  Google Scholar 

  81. Shahzadi, S.K., et al., 99mTc-amoxicillin: A novel radiopharmaceutical for infection imaging. Arabian Journal of Chemistry.

    Google Scholar 

  82. Yurt Lambrecht, F., et al., Preparation and biodistribution of [131 I] linezolid in animal model infection and inflammation. Journal of radioanalytical and nuclear chemistry, 2009. 281(3): p. 415-419.

    Article  Google Scholar 

  83. Shah, S., A. Khan, and M. Khan, Radiosynthesis of 99mTc-nitrofurantoin a novel radiotracer for in vivo imaging of Escherichia coli infection. Journal of Radioanalytical and Nuclear Chemistry, 2011. 287(2): p. 417-422.

    Article  CAS  Google Scholar 

  84. Essouissi, I., et al., Synthesis and evaluation of 99mTc-N-sulfanilamide ferrocene carboxamide as bacterial infections detector. Nucl Med Biol, 2010. 37(7): p. 821-9.

    Article  CAS  PubMed  Google Scholar 

  85. van Oosten, M., et al., Real-time in vivo imaging of invasive- and biomaterial-associated bacterial infections using fluorescently labelled vancomycin. Nat Commun, 2013. 4: p. 2584.

    PubMed  Google Scholar 

  86. Sadeghi, M., Preparation and biodistribution of [201Tl](III) vancomycin complex in normal rats. Nukleonika, 2006. 51(4): p. 203-208.

    Google Scholar 

  87. Roohi, S., A. Mushtaq, and S.A. Malik, Synthesis and biodistribution of 99mTc-Vancomycin in a model of bacterial infection. Radiochimica Acta, 2005. 93(7): p. 415-418.

    Article  CAS  Google Scholar 

  88. Martin-Comin, J., et al., [Diagnosis of bone infection with 99mTc-ceftizoxime]. Rev Esp Med Nucl, 2004. 23(5): p. 357.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward A. Weinstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ordonez, A.A., Bambarger, L.E., Jain, S.K., Weinstein, E.A. (2017). Biodistribution and Pharmacokinetics of Antimicrobials. In: Jain, S. (eds) Imaging Infections . Springer, Cham. https://doi.org/10.1007/978-3-319-54592-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54592-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54590-5

  • Online ISBN: 978-3-319-54592-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics