Signalling Microdomains: The Beta-3 Adrenergic Receptor/NOS Signalosome

  • J. Hammond
  • J.-L. Balligand
Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol.)


Plasma membrane “signalosomes” are highly compartmentalised, as required for signalling specificity to diverse downstream effectors from particular surface receptors. This is achieved by spatial confinement of receptors and effectors in specific membrane locales, such as caveolae, but also by receptor translocation to particular plasma membrane locations upon ligand stimuli, cellular stress or pathophysiologic conditions, thereby changing downstream coupling. Beta-adrenoreceptors in cardiac myocytes are no exception. In this review, we will illustrate the case of cardiac beta-3 adrenergic receptors (β3ARs) coupled to nitric oxide synthases and guanylyl cyclase/cyclic GMP and its effects on cardiac remodelling.


cGMP NOS sGC cGKI Beta-3 adrenergic receptor 


Compliance with Ethical Standards

Conflict of Interest Statement

The authors declare that they have no conflict of interest.


  1. Agullo L et al (2005) Membrane association of nitric oxide-sensitive guanylyl cyclase in cardiomyocytes. Cardiovasc Res 68:65–74PubMedCrossRefGoogle Scholar
  2. Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615PubMedPubMedCentralCrossRefGoogle Scholar
  3. Angelone T, Filice E, Quintieri AM, Imbrogno S, Recchia A, Pulerà E, Mannarino C, Pellegrino D, Cerra MC (2008) Beta3-adrenoceptors modulate left ventricular relaxation in the rat heart via the NO-cGMP-PKG pathway. Acta Physiol (Oxf). 193(3):229–239.Google Scholar
  4. Ashley EA, Sears CE, Bryant SM, Watkins HC, Casadei B (2002) Cardiac nitric oxide synthase 1 regulates basal and β-adrenergic contractility in murine ventricular myocytes. Circulation 105:3011–3016PubMedCrossRefGoogle Scholar
  5. Balligand JL, Feron O, Dessy C (2009) eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev 89:481–534PubMedCrossRefGoogle Scholar
  6. Balligand JL, Kelly RA, Marsden PA, Smith TW, Michel T (1993a) Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc Natl Acad Sci U S A 90(1):347–351Google Scholar
  7. Balligand JL, Ungureanu D, Kelly RA, Kobzik L, Pimental D, Michel T, Smith TW (1993b) Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J Clin Invest. 91(5):2314–2319Google Scholar
  8. Balligand JL et al (1994) Cytokine-inducible nitric oxide synthase (iNOS) expression in cardiac myocytes. Characterisation and regulation of iNOS expression and detection of iNOS activity in single cardiac myocytes in vitro. J Biol Chem 269:27580–27588PubMedGoogle Scholar
  9. Balligand JL et al (1995) Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelial (type III) nitric oxide synthase in cardiac myocytes. J Biol Chem 270:14582–14586PubMedCrossRefGoogle Scholar
  10. Barouch LA et al (2002) Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416:337–339Google Scholar
  11. Belge C, Massion PB, Pelat M, Balligand JL (2005) Nitric oxide and the heart: update on new paradigms. Ann N Y Acad Sci 1047:173–182Google Scholar
  12. Belge C, et al (2014) Enhanced expression of beta3-adrenoceptors in cardiac myocytes attenuates neurohormone-induced hypertrophic remodeling through nitric oxide synthase. Circulation 129:451–462PubMedCrossRefGoogle Scholar
  13. Bendall JK et al (2004) Role of myocardial neuronal nitric oxide synthase-derived nitric oxide in β-adrenergic hyporesponsiveness after myocardial infarction-induced heart failure in rat. Circulation 110:2368–2375PubMedCrossRefGoogle Scholar
  14. Blanton RM et al (2012) Protein kinase G Iα inhibits pressure overload-induced cardiac remodeling and is required for the cardioprotective effect of sildenafil in vivo. J Am Heart Assoc 1:e003731PubMedPubMedCentralCrossRefGoogle Scholar
  15. Boerrigter G et al (2007) Targeting heme-oxidized soluble guanylate cyclase in experimental heart failure. Hypertension 49:1128–1133PubMedCrossRefGoogle Scholar
  16. Brunner F et al (2003) Attenuation of myocardial ischemia/reperfusion injury in mice with myocyte-specific overexpression of endothelial nitric oxide synthase. Cardiovasc Res 57:55–62PubMedCrossRefGoogle Scholar
  17. Bueno OF et al (2002) Impaired cardiac hypertrophic response in Calcineurin Aβ -deficient mice. Proc Natl Acad Sci U S A 99:4586–4591PubMedPubMedCentralCrossRefGoogle Scholar
  18. Burgoyne JR et al (2007) Cysteine redox sensor in PKGIα enables oxidant-induced activation. Science 317:1393–1397PubMedCrossRefGoogle Scholar
  19. Burkard N et al (2007) Conditional neuronal nitric oxide synthase overexpression impairs myocardial contractility. Circ Res 100:e32–e44PubMedCrossRefGoogle Scholar
  20. Bush EW et al (2006) Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J Biol Chem 281:33487–33496PubMedCrossRefGoogle Scholar
  21. Buys ES et al (2007) Cardiomyocyte-restricted restoration of nitric oxide synthase 3 attenuates left ventricular remodeling after chronic pressure overload. Am J Physiol Heart Circ Physiol 293:H620–H627PubMedCrossRefGoogle Scholar
  22. Buys ES et al (2009) sGCα1β1 attenuates cardiac dysfunction and mortality in murine inflammatory shock models. Am J Phys Heart Circ Phys 297:H654–H663Google Scholar
  23. Calderone A, Thaik CM, Takahashi N, Chang DL, Colucci WS (1998) Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts. J Clin Invest 101:812–818PubMedPubMedCentralCrossRefGoogle Scholar
  24. Calvert JW et al (2011) Exercise Protects Against Myocardial Ischemia-Reperfusion Injury via Stimulation of β3-Adrenergic Receptors and Increased Nitric Oxide Signaling: Role of Nitrite and Nitrosothiols. Circ Res 108:1448–1458PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cary SP, Winger JA, Marletta MA (2005) Tonic and acute nitric oxide signaling through soluble guanylate cyclase is mediated by nonheme nitric oxide, ATP, and GTP. Proc Natl Acad Sci U S A 102:13064–13069PubMedPubMedCentralCrossRefGoogle Scholar
  26. Castro LR, Schittl J, Fischmeister R (2010) Feedback control through cGMP-dependent protein kinase contributes to differential regulation and compartmentation of cGMP in rat cardiac myocytes. Circ Res 107:1232–1240PubMedCrossRefGoogle Scholar
  27. Castro LR, Verde I, Cooper DM, Fischmeister R (2006) Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes. Circulation 113:2221–2228PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cawley SM et al (2011) sGCα1 mediates the negative inotropic effects of NO in cardiac myocytes independent of changes in calcium handling. Am J Physiol Heart Circ Physiol 2:2Google Scholar
  29. Chen CA et al (2010) S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature 468:1115–1118PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cook SA, Clerk A, Sugden PH (2009) Are transgenic mice the ‘alkahest’ to understanding myocardial hypertrophy and failure? J Mol Cell Cardiol 46:118–129PubMedCrossRefGoogle Scholar
  31. Corbin JD, Turko IV, Beasley A, Francis SH (2000) Phosphorylation of phosphodiesterase-5 by cyclic nucleotide-dependent protein kinase alters its catalytic and allosteric cGMP-binding activities. Eur J Biochem 267:2760–2767PubMedCrossRefGoogle Scholar
  32. Dawson D et al (2005) nNOS gene deletion exacerbates pathological left ventricular remodeling and functional deterioration after myocardial infarction. Circulation 112:3729–3737PubMedCrossRefGoogle Scholar
  33. Devic E, Xiang Y, Gould D, Kobilka B (2001) β-adrenergic receptor subtype-specific signaling in cardiac myocytes from β1 and β2 adrenoceptor knockout mice. Mol Pharmacol 60:577–583PubMedGoogle Scholar
  34. Di Benedetto G et al (2008) Protein kinase A type I and type II define distinct intracellular signaling compartments. Circ Res 103:836–844PubMedCrossRefGoogle Scholar
  35. Eder P, Molkentin JD (2011) TRPC Channels As Effectors of Cardiac Hypertrophy. Circ Res 108:265–272PubMedCrossRefGoogle Scholar
  36. Emorine LJ, Marullo S, Briend-Sutren MM, Patey G, Tate K, Delavier-Klutchko C, Strosberg AD (1989) Molecular characterization of the human beta 3-adrenergic receptor. Science. 245(4922):1118–1121Google Scholar
  37. Fernhoff NB, Derbyshire ER, Marletta MA (2009) A nitric oxide/cysteine interaction mediates the activation of soluble guanylate cyclase. Proc Natl Acad Sci U S A 106:21602–21607PubMedPubMedCentralCrossRefGoogle Scholar
  38. Feron O et al (1996) Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem 271:22810–22814PubMedCrossRefGoogle Scholar
  39. Fiedler B et al (2002) Inhibition of calcineurin-NFAT hypertrophy signaling by cGMP-dependent protein kinase type I in cardiac myocytes. Proc Natl Acad Sci U S A 99:11363–11368PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fischmeister R et al (2006) Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res 99:816–828PubMedCrossRefGoogle Scholar
  41. Flogel U, Merx MW, Godecke A, Decking UK, Schrader J (2001) Myoglobin: A scavenger of bioactive NO. Proc Natl Acad Sci U S A 98:735–740PubMedPubMedCentralCrossRefGoogle Scholar
  42. Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33:829–837PubMedCrossRefGoogle Scholar
  43. Francis SH, Busch JL, Corbin JD, Sibley D (2010) cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev 62:525–563PubMedPubMedCentralCrossRefGoogle Scholar
  44. Frantz S et al (2013) Stress-dependent dilated cardiomyopathy in mice with cardiomyocyte-restricted inactivation of cyclic GMP-dependent protein kinase I. Eur Heart J 34:1233–1244PubMedCrossRefGoogle Scholar
  45. Friebe A, Mergia E, Dangel O, Lange A, Koesling D (2007) Fatal gastrointestinal obstruction and hypertension in mice lacking nitric oxide-sensitive guanylyl cyclase. Proc Natl Acad Sci U S A 104:7699–7704PubMedPubMedCentralCrossRefGoogle Scholar
  46. Fujimura T et al (1999) Expression and possible functional role of the β3-adrenoceptor in human and rat detrusor muscle. J Urol 161:680–685PubMedCrossRefGoogle Scholar
  47. Geiselhoringer A, Gaisa M, Hofmann F, Schlossmann J (2004) Distribution of IRAG and cGKI-isoforms in murine tissues. FEBS Lett 575:19–22PubMedCrossRefGoogle Scholar
  48. Godecke A, Schrader J (2004) The Janus faces of NO? Circ Res 94:e55PubMedCrossRefGoogle Scholar
  49. Gonzalez DR, Beigi F, Treuer AV, Hare JM (2007) Deficient ryanodine receptor S-nitrosylation increases sarcoplasmic reticulum calcium leak and arrhythmogenesis in cardiomyocytes. Proc Natl Acad Sci U S A 104:20612–20617PubMedPubMedCentralCrossRefGoogle Scholar
  50. Götz, K., et al. (2013) PDE3 regulates cGMP levels and cGMP/cAMP cross-talk in adult mouse ventricular cardiomyocytes. Emmy Noether Group of the DFG, Department of Cardiology and Pneumology, European Heart Research, Institute Göttingen, Georg August University Medical Center, University of Göttingen, D-37075 Göttingen, Germany.Google Scholar
  51. Gauthier C, Tavernier G, Charpentier F, Langin D, Le Marec H (1996) Functional beta3-adrenoceptor in the human heart. J Clin Invest. 98(2):556–562Google Scholar
  52. Gauthier C, Leblais V, Kobzik L, Trochu JN, Khandoudi N, Bril A, Balligand JL, Le Marec H (1998) The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J Clin Invest. 102(7):1377–1384Google Scholar
  53. Guazzi M, Vicenzi M, Arena R, Guazzi MD (2011a) PDE5 inhibition with Sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study. Circ Heart Fail 4:8–17PubMedCrossRefGoogle Scholar
  54. Guazzi M, Vicenzi M, Arena R, Guazzi MD (2011b) Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase-5 inhibition in a 1-year study. Circulation 124:164–174PubMedCrossRefGoogle Scholar
  55. Haldar SM, Stamler JS (2013) S-nitrosylation: integrator of cardiovascular performance and oxygen delivery. J Clin Invest 123:101–110PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hammond J, Balligand J-L (2012) Nitric oxide synthase and cyclic GMP signaling in cardiac myocytes: From contractility to remodeling. J Mol Cell Cardiol 52:330–340PubMedCrossRefGoogle Scholar
  57. Hare JM, Loh E, Creager MA, Colucci WS (1995) Nitric oxide inhibits the positive inotropic response to β-adrenergic stimulation in humans with left ventricular dysfunction. Circulation 92:2198–2203PubMedCrossRefGoogle Scholar
  58. Hassan MA, Ketat AF (2005) Sildenafil citrate increases myocardial cGMP content in rat heart, decreases its hypertrophic response to isoproterenol and decreases myocardial leak of creatine kinase and troponin T. BMC Pharmacol 5:10PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hataishi R et al (2006) Nitric oxide synthase 2 and pressure-overload-induced left ventricular remodelling in mice. Exp Physiol 91:633–639PubMedCrossRefGoogle Scholar
  60. van Heerebeek L et al (2012) Low Myocardial Protein Kinase G Activity in Heart Failure With Preserved Ejection Fraction. Circulation 126:830–839PubMedCrossRefGoogle Scholar
  61. Heger J et al (2002) Cardiac-specific overexpression of inducible nitric oxide synthase does not result in severe cardiac dysfunction. Circ Res 90:93–99PubMedCrossRefGoogle Scholar
  62. Houser SR, Molkentin JD (2008) Does contractile Ca2+ control calcineurin-NFAT signaling and pathological hypertrophy in cardiac myocytes? Sci Signal 24(1):pe31Google Scholar
  63. Hsu S et al (2009) Phosphodiesterase 5 inhibition blocks pressure overload-induced cardiac hypertrophy independent of the calcineurin pathway. Cardiovasc Res 81:301–309PubMedCrossRefGoogle Scholar
  64. Humbert P et al (1990) Purification of soluble guanylyl cyclase from bovine lung by a new immunoaffinity chromatographic method. Eur J Biochem 190:273–278PubMedCrossRefGoogle Scholar
  65. Ichinose F et al (2004) Pressure overload-induced LV hypertrophy and dysfunction in mice are exacerbated by congenital NOS3 deficiency. Am J Physiol Heart Circ Physiol 286:H1070–H1075PubMedCrossRefGoogle Scholar
  66. Idigo WO et al (2012) Regulation of endothelial nitric-oxide synthase (NOS) S-glutathionylation by neuronal NOS: evidence of a functional interaction between myocardial constitutive NOS isoforms. J Biol Chem 287:43665–43673PubMedPubMedCentralCrossRefGoogle Scholar
  67. Irvine JC et al (2012) The soluble guanylyl cyclase activator Bay 58-2667 selectively limits cardiomyocyte hypertrophy. PLoS One 7:e44481PubMedPubMedCentralCrossRefGoogle Scholar
  68. Janssens S et al (2004) Cardiomyocyte-specific overexpression of nitric oxide synthase 3 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circ Res 94:1256–1262PubMedCrossRefGoogle Scholar
  69. Kamisaki Y et al (1986) Soluble guanylate cyclase from rat lung exists as a heterodimer. J Biol Chem 261:7236–7241PubMedGoogle Scholar
  70. Kass DA, Takimoto E (2010) Regulation and role of myocyte cyclic GMP-dependent protein kinase-1. Proc Natl Acad Sci U S A 107(24):E98; author reply E99Google Scholar
  71. Khan SA et al (2004) Neuronal nitric oxide synthase negatively regulates xanthine oxidoreductase inhibition of cardiac excitation-contraction coupling. Proc Natl Acad Sci U S A 101:15944–15948PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kilic A, Bubikat A, Gassner B, Baba HA, Kuhn M (2007) Local actions of atrial natriuretic peptide counteract angiotensin II stimulated cardiac remodeling. Endocrinology 148:4162–4169PubMedCrossRefGoogle Scholar
  73. Kilic A et al (2005) Enhanced activity of the myocardial Na+/H+ exchanger NHE-1 contributes to cardiac remodeling in atrial natriuretic peptide receptor-deficient mice. Circulation 112:2307–2317PubMedCrossRefGoogle Scholar
  74. Kinoshita H et al (2010) Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-A signaling in the heart. Circ Res 106:1849–1860PubMedCrossRefGoogle Scholar
  75. Kirchhof P et al (2004) Ventricular arrhythmias, increased cardiac calmodulin kinase II expression, and altered repolarisation kinetics in ANP receptor deficient mice. J Mol Cell Cardiol 36:691–700PubMedCrossRefGoogle Scholar
  76. Klaiber M et al (2010) Novel insights into the mechanisms mediating the local antihypertrophic effects of cardiac atrial natriuretic peptide: role of cGMP-dependent protein kinase and RGS2. Basic Res Cardiol 30:30Google Scholar
  77. Kohr MJ et al (2011) Characterisation of potential S-nitrosylation sites in the myocardium. Am J Physiol Heart Circ Physiol 300:H1327–H1335PubMedPubMedCentralCrossRefGoogle Scholar
  78. Koitabashi N et al (2009) Cyclic GMP/PKG-dependent inhibition of TRPC6 channel activity and expression negatively regulates cardiomyocyte NFAT activation Novel mechanism of cardiac stress modulation by PDE5 inhibition. J Mol Cell Cardiol 48(4):713–724PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kruger M, Linke WA (2011) The giant protein titin: a regulatory node that integrates myocyte signaling pathways. J Biol Chem 286:9905–9912PubMedPubMedCentralCrossRefGoogle Scholar
  80. Landmesser U et al (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 111:1201–1209PubMedPubMedCentralCrossRefGoogle Scholar
  81. Layland J, Li JM, Shah AM (2002) Role of cyclic GMP-dependent protein kinase in the contractile response to exogenous nitric oxide in rat cardiac myocytes. J Physiol 540(Pt 2):457–467Google Scholar
  82. Lee DI et al (2010) PDE5A suppression of acute β-adrenergic activation requires modulation of myocyte β3 signaling coupled to PKG-mediated troponin I phosphorylation. Basic Res Cardiol 105:337–347PubMedPubMedCentralCrossRefGoogle Scholar
  83. Lee DI et al (2015) Phosphodiesterase 9A controls nitric oxide-independent cGMP and hypertrophic heart disease. Nature 519:472–476PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lewis GD et al (2007) Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation 116:1555–1562PubMedCrossRefGoogle Scholar
  85. Lima B, Forrester MT, Hess DT, Stamler JS (2010) S-nitrosylation in cardiovascular signaling. Circ Res 106:633–646PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lindquist JM, Fredriksson JM, Rehnmark S, Cannon B, Nedergaard J (2000) β3- and α1-adrenergic Erk1/2 activation is Src- but not Gi-mediated in Brown adipocytes. J Biol Chem 275:22670–22677PubMedCrossRefGoogle Scholar
  87. Ling H et al (2009) Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J Clin Invest 119:1230–1240PubMedPubMedCentralCrossRefGoogle Scholar
  88. Lu Z et al (2010) Oxidative stress regulates left ventricular PDE5 expression in the failing heart. Circulation 121:1474–1483PubMedPubMedCentralCrossRefGoogle Scholar
  89. Lukowski R et al (2010) Cardiac hypertrophy is not amplified by deletion of cGMP-dependent protein kinase I in cardiomyocytes. Proc Natl Acad Sci U S A 8:8Google Scholar
  90. Massion PB, Feron O, Dessy C, Balligand JL (2003) Nitric oxide and cardiac function: ten years after, and continuing. Circ Res 93:388–398PubMedCrossRefGoogle Scholar
  91. Mergia E, Friebe A, Dangel O, Russwurm M, Koesling D (2006) Spare guanylyl cyclase NO receptors ensure high NO sensitivity in the vascular system. J Clin Invest 116:1731–1737PubMedPubMedCentralCrossRefGoogle Scholar
  92. Michael SK et al (2008) High blood pressure arising from a defect in vascular function. Proc Natl Acad Sci 105:6702–6707PubMedPubMedCentralCrossRefGoogle Scholar
  93. Miller CL et al (2009) Role of Ca2+/calmodulin-stimulated cyclic nucleotide phosphodiesterase 1 in mediating cardiomyocyte hypertrophy. Circ Res 105:956–964PubMedPubMedCentralCrossRefGoogle Scholar
  94. Mohamed TMA et al (2011) Plasma Membrane Calcium Pump (PMCA4)-Neuronal Nitric-oxide Synthase Complex Regulates Cardiac Contractility through Modulation of a Compartmentalized Cyclic Nucleotide Microdomain. J Biol Chem 286:41520–41529PubMedPubMedCentralCrossRefGoogle Scholar
  95. Molkentin JD et al (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228PubMedPubMedCentralCrossRefGoogle Scholar
  96. Mongillo M et al (2006) Compartmentalized phosphodiesterase-2 activity blunts β-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway. Circ Res 98:226–234PubMedCrossRefGoogle Scholar
  97. Mungrue IN, Stewart DJ, Husain M (2003) The Janus faces of iNOS. Circ Res 93:e74PubMedCrossRefGoogle Scholar
  98. Mungrue IN et al (2002) Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death. J Clin Invest 109:735–743PubMedPubMedCentralCrossRefGoogle Scholar
  99. Munzel T, Daiber A, Ullrich V, Mulsch A (2005) Vascular consequences of endothelial nitric oxide synthase uncoupling for the activity and expression of the soluble guanylyl cyclase and the cGMP-dependent protein kinase. Arterioscler Thromb Vasc Biol 25:1551–1557PubMedCrossRefGoogle Scholar
  100. Nagayama T, Zhang M, Hsu S, Takimoto E, Kass DA (2008) Sustained soluble guanylate cyclase stimulation offsets nitric-oxide synthase inhibition to restore acute cardiac modulation by sildenafil. J Pharmacol Exp Ther 326:380–387PubMedCrossRefGoogle Scholar
  101. Nagayama T et al (2009a) Pressure-overload magnitude-dependence of the anti-hypertrophic efficacy of PDE5A inhibition. J Mol Cell Cardiol 46:560–567PubMedCrossRefGoogle Scholar
  102. Nagayama T et al (2009b) Sildenafil stops progressive chamber, cellular, and molecular remodeling and improves calcium handling and function in hearts with pre-existing advanced hypertrophy caused by pressure overload. J Am Coll Cardiol 53:207–215PubMedPubMedCentralCrossRefGoogle Scholar
  103. Nagendran J et al (2007) Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation 116:238–248PubMedCrossRefGoogle Scholar
  104. Nakamura TY, Iwata Y, Arai Y, Komamura K, Wakabayashi S (2008) Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure. Circ Res 103:891–899PubMedCrossRefGoogle Scholar
  105. New England Research Institutes (2013) Phosphodiesterase Type 5 inhibition with Tadalafil changes outcomes in heart failure (PITCH-HF). Vol. 2014. National Library of Medicine (US), Bethesda (MD).Google Scholar
  106. Nikolaev VO et al (2010) β2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327:1653–1657PubMedCrossRefGoogle Scholar
  107. Nishida M et al (2010) Phosphorylation of TRPC6 channels at Thr69 is required for anti-hypertrophic effects of phosphodiesterase 5 inhibition. J Biol Chem 285:13244–13253PubMedPubMedCentralCrossRefGoogle Scholar
  108. Niu X et al (2012) Cardioprotective Effect of β3 Adrenergic Receptor Agonism—Role of Neuronal Nitric Oxide Synthase. J Am Coll Cardiol 59:1979–1987PubMedPubMedCentralCrossRefGoogle Scholar
  109. Oceandy D et al (2007) Neuronal Nitric Oxide Synthase Signaling in the Heart Is Regulated by the Sarcolemmal Calcium Pump 4b. Circulation 115:483–492PubMedCrossRefGoogle Scholar
  110. Omori K, Kotera J (2007) Overview of PDEs and their regulation. Circ Res 100:309–327PubMedCrossRefGoogle Scholar
  111. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424PubMedPubMedCentralCrossRefGoogle Scholar
  112. Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526PubMedCrossRefGoogle Scholar
  113. Perez NG et al (2007) Phosphodiesterase 5A inhibition induces Na+/H+ exchanger blockade and protection against myocardial infarction. Hypertension 49:1095–1103PubMedCrossRefGoogle Scholar
  114. Pfeifer A et al (1998) Defective smooth muscle regulation in cGMP kinase I-deficient mice. EMBO J 17:3045–3051PubMedPubMedCentralCrossRefGoogle Scholar
  115. Pokreisz P et al (2009) Ventricular phosphodiesterase-5 expression is increased in patients with advanced heart failure and contributes to adverse ventricular remodeling after myocardial infarction in mice. Circulation 119:408–416PubMedPubMedCentralCrossRefGoogle Scholar
  116. Portbury AL, Ronnebaum SM, Zungu M, Patterson C, Willis MS (2012) Back to your heart: ubiquitin proteasome system-regulated signal transduction. J Mol Cell Cardiol 52:526–537PubMedCrossRefGoogle Scholar
  117. Pou S, Keaton L, Surichamorn W, Rosen GM (1999) Mechanism of Superoxide Generation by Neuronal Nitric-oxide Synthase. J Biol Chem 274:9573–9580PubMedCrossRefGoogle Scholar
  118. Pou S, Pou WS, Bredt DS, Snyder SH, Rosen GM (1992) Generation of superoxide by purified brain nitric oxide synthase. J Biol Chem 267:24173–24176PubMedGoogle Scholar
  119. Ranek MJ, Terpstra EJ, Li J, Kass DA, Wang X (2013) Protein Kinase G Positively Regulates Proteasome-Mediated Degradation of Misfolded Proteins. Circulation 128(4):365–376PubMedPubMedCentralCrossRefGoogle Scholar
  120. Redfield MM et al (2012) PhosphodiesteRasE-5 Inhibition to Improve CLinical Status and EXercise Capacity in Diastolic Heart Failure (RELAX) trial: rationale and design. Circulation: Heart Failure 5:653–659PubMedCentralGoogle Scholar
  121. Redfield MM et al (2013) Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 309:1268–1277PubMedCrossRefGoogle Scholar
  122. Ritchie RH et al (2009) Exploiting cGMP-based therapies for the prevention of left ventricular hypertrophy: NO* and beyond. Pharmacol Ther 124:279–300PubMedCrossRefGoogle Scholar
  123. Robidoux J et al (2006) Maximal β3-adrenergic regulation of lipolysis involves Src and epidermal growth factor receptor-dependent ERK1/2 activation. J Biol Chem 281:37794–37802PubMedCrossRefGoogle Scholar
  124. Rudyk O et al (2013) Protein kinase G oxidation is a major cause of injury during sepsis. Proc Natl Acad Sci U S A 110:9909–9913PubMedPubMedCentralCrossRefGoogle Scholar
  125. Ruiz-Stewart I et al (2004) Guanylyl cyclase is an ATP sensor coupling nitric oxide signaling to cell metabolism. Proc Natl Acad Sci U S A 101:37–42PubMedCrossRefGoogle Scholar
  126. Saraiva RM et al (2005) Deficiency of neuronal nitric oxide synthase increases mortality and cardiac remodeling after myocardial infarction: role of nitroso-redox equilibrium. Circulation 112:3415–3422PubMedCrossRefGoogle Scholar
  127. Scherrer-Crosbie M et al (2001) Endothelial nitric oxide synthase limits left ventricular remodeling after myocardial infarction in mice. Circulation 104:1286–1291PubMedCrossRefGoogle Scholar
  128. Schroder F et al (2003) Single L-type Ca2+ channel regulation by cGMP-dependent protein kinase type I in adult cardiomyocytes from PKG I transgenic mice. Cardiovasc Res 60:268–277PubMedCrossRefGoogle Scholar
  129. Sears CE, Ashley EA, Casadei B (2004) Nitric oxide control of cardiac function: is neuronal nitric oxide synthase a key component? Philos Trans R Soc Lond Ser B Biol Sci 359:1021–1044CrossRefGoogle Scholar
  130. Seddon M, Shah AM, Casadei B (2007) Cardiomyocytes as effectors of nitric oxide signalling. Cardiovasc Res 75:315–326PubMedCrossRefGoogle Scholar
  131. Sharma RK, Wang JH (1985) Differential regulation of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase isoenzymes by cyclic AMP-dependent protein kinase and calmodulin-dependent phosphatase. Proc Natl Acad Sci U S A 82:2603–2607PubMedPubMedCentralCrossRefGoogle Scholar
  132. Soeder KJ, Snedden SK, Cao W, Della Rocca GJ, Daniel KW, Luttrell LM, Collins S (1999) The beta3-adrenergic receptor activates mitogen-activated protein kinase in adipocytes through a Gi-dependent mechanism. J Biol Chem. 23;274(17):12017–12022Google Scholar
  133. Sonnenburg WK et al (1995) Identification of inhibitory and calmodulin-binding domains of the PDE1A1 and PDE1A2 calmodulin-stimulated cyclic nucleotide phosphodiesterases. J Biol Chem 270:30989–31000PubMedCrossRefGoogle Scholar
  134. Stangherlin A et al (2011) cGMP Signals Modulate cAMP Levels in a Compartment-Specific Manner to Regulate Catecholamine-Dependent Signaling in Cardiac Myocytes. Circ Res 17:17Google Scholar
  135. Stasch JP et al (2001) NO-independent regulatory site on soluble guanylate cyclase. Nature 410:212–215PubMedCrossRefGoogle Scholar
  136. Stasch JP et al (2002) NO- and haem-independent activation of soluble guanylyl cyclase: molecular basis and cardiovascular implications of a new pharmacological principle. Br J Pharmacol 136:773–783PubMedPubMedCentralCrossRefGoogle Scholar
  137. Strosberg AD (1997) Structure and function of the beta 3-adrenergic receptor. Annu Rev Pharmacol Toxicol 37:421–450Google Scholar
  138. Sun J, Morgan M, Shen RF, Steenbergen C, Murphy E (2007) Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetics and calcium transport. Circ Res 101:1155–1163PubMedCrossRefGoogle Scholar
  139. Sun J, Murphy E (2010) Protein S-nitrosylation and cardioprotection. Circ Res 106:285–296PubMedPubMedCentralCrossRefGoogle Scholar
  140. Sun Y et al (2009) Deletion of inducible nitric oxide synthase provides cardioprotection in mice with 2-kidney, 1-clip hypertension. Hypertension 53:49–56PubMedCrossRefGoogle Scholar
  141. Takimoto E, Champion HC, Belardi D, Moslehi J, Mongillo M, Mergia E, Montrose DC, Isoda T, Aufiero K, Zaccolo M, Dostmann WR, Smith CJ, Kass DA (2005) cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism. Circ Res 96(1):100–109Google Scholar
  142. Takimoto E et al (2007) Compartmentalisation of cardiac β-adrenergic inotropy modulation by phosphodiesterase type 5. Circulation 115:2159–2167PubMedCrossRefGoogle Scholar
  143. Takimoto E et al (2009) Regulator of G protein signaling 2 mediates cardiac compensation to pressure overload and antihypertrophic effects of PDE5 inhibition in mice. J Clin Invest 119:408–420PubMedPubMedCentralGoogle Scholar
  144. Thomas DD et al (2004) Hypoxic inducible factor 1α, extracellular signal-regulated kinase, and p53 are regulated by distinct threshold concentrations of nitric oxide. Proc Natl Acad Sci U S A 101:8894–8899PubMedPubMedCentralCrossRefGoogle Scholar
  145. Tokudome T et al (2005) Calcineurin-nuclear factor of activated T cells pathway-dependent cardiac remodeling in mice deficient in guanylyl cyclase A, a receptor for atrial and brain natriuretic peptides. Circulation 111:3095–3104PubMedCrossRefGoogle Scholar
  146. Tokudome T et al (2008) Regulator of G-protein signaling subtype 4 mediates antihypertrophic effect of locally secreted natriuretic peptides in the heart. Circulation 117:2329–2339PubMedCrossRefGoogle Scholar
  147. Trappanese DM et al (2015) Chronic beta1-adrenergic blockade enhances myocardial beta3-adrenergic coupling with nitric oxide-cGMP signaling in a canine model of chronic volume overload: new insight into mechanisms of cardiac benefit with selective beta1-blocker therapy. Basic Res Cardiol 110:456–470PubMedCrossRefGoogle Scholar
  148. Tsai EJ et al (2012) Pressure-overload-induced subcellular relocalisation/oxidation of soluble guanylyl cyclase in the heart modulates enzyme stimulation. Circ Res 110:295–303PubMedCrossRefGoogle Scholar
  149. Vandenwijngaert S et al (2013) Increased cardiac myocyte PDE5 levels in human and murine pressure overload hypertrophy contribute to adverse LV remodeling. PLoS One 8:e58841PubMedPubMedCentralCrossRefGoogle Scholar
  150. Vandeput F et al (2007) Cyclic nucleotide phosphodiesterase PDE1C1 in human cardiac myocytes. J Biol Chem 282:32749–32757PubMedCrossRefGoogle Scholar
  151. Vandeput F et al (2009) cGMP-hydrolytic activity and its inhibition by sildenafil in normal and failing human and mouse myocardium. J Pharmacol Exp Ther 330:884–891PubMedPubMedCentralCrossRefGoogle Scholar
  152. Vaniotis G et al (2013) Regulation of cardiac nitric oxide signaling by nuclear β-adrenergic and endothelin receptors. J Mol Cell Cardiol 62:58–68PubMedPubMedCentralCrossRefGoogle Scholar
  153. Varghese P et al (2000) β3-adrenoceptor deficiency blocks nitric oxide-dependent inhibition of myocardial contractility. J Clin Invest 106:697–703PubMedPubMedCentralCrossRefGoogle Scholar
  154. Vásquez-Vivar J et al (1998) Superoxide generation by endothelial nitric oxide synthase: The influence of cofactors. Proc Natl Acad Sci 95:9220–9225PubMedPubMedCentralCrossRefGoogle Scholar
  155. Vermeersch P et al (2007) Soluble guanylate cyclase-α1 deficiency selectively inhibits the pulmonary vasodilator response to nitric oxide and increases the pulmonary vascular remodeling response to chronic hypoxia. Circulation 116:936–943PubMedCrossRefGoogle Scholar
  156. Wang H, Kohr MJ, Traynham CJ, Ziolo MT (2009) Phosphodiesterase 5 restricts NOS3/Soluble guanylate cyclase signaling to L-type Ca2+ current in cardiac myocytes. J Mol Cell Cardiol 47:304–314PubMedPubMedCentralCrossRefGoogle Scholar
  157. Wang H et al (2008) Neuronal nitric oxide synthase signaling within cardiac myocytes targets phospholamban. Am J Physiol Cell Physiol 294:C1566–C1575PubMedPubMedCentralCrossRefGoogle Scholar
  158. Watts VL et al (2013) Anti-hypertrophic and anti-oxidant effect of β3-adrenergic stimulation in myocytes requires differential neuronal NOS phosphorylation. J Mol Cell Cardiol 62:8–17PubMedPubMedCentralCrossRefGoogle Scholar
  159. Weber S et al (2007) Rescue of cGMP kinase I knockout mice by smooth muscle specific expression of either isozyme. Circ Res 101:1096–1103PubMedCrossRefGoogle Scholar
  160. Wedel B et al (1994) Mutation of His-105 in the β1 subunit yields a nitric oxide-insensitive form of soluble guanylyl cyclase. Proc Natl Acad Sci U S A 91:2592–2596PubMedPubMedCentralCrossRefGoogle Scholar
  161. Wollert KC et al (2002) Gene transfer of cGMP-dependent protein kinase I enhances the antihypertrophic effects of nitric oxide in cardiomyocytes. Hypertension 39:87–92PubMedCrossRefGoogle Scholar
  162. Wright PT et al (2014) Caveolin-3 regulates compartmentation of cardiomyocyte β2-adrenergic receptor-mediated cAMP signaling. J Mol Cell Cardiol 67:38–48PubMedCrossRefGoogle Scholar
  163. Wu X, Eder P, Chang B, Molkentin JD (2010) TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proc Natl Acad Sci U S A 107:7000–7005PubMedPubMedCentralCrossRefGoogle Scholar
  164. Wunderlich C, Flogel U, Godecke A, Heger J, Schrader J (2003) Acute inhibition of myoglobin impairs contractility and energy state of iNOS-overexpressing hearts. Circ Res 92:1352–1358PubMedCrossRefGoogle Scholar
  165. Xia Y, Dawson VL, Dawson TM, Snyder SH, Zweier JL (1996) Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proc Natl Acad Sci U S A 93:6770–6774PubMedPubMedCentralCrossRefGoogle Scholar
  166. Xu KY, Huso DL, Dawson TM, Bredt DS, Becker LC (1999) Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc Natl Acad Sci U S A 96:657–662PubMedPubMedCentralCrossRefGoogle Scholar
  167. Yang L et al (2007) Protein kinase G phosphorylates Cav1.2 α1c and β2 subunits. Circ Res 101:465–474PubMedCrossRefGoogle Scholar
  168. Yeves AM et al (2010) Decreased activity of the Na+/H+ exchanger by phosphodiesterase 5A inhibition is attributed to an increase in protein phosphatase activity. Hypertension 56:690–695PubMedCrossRefGoogle Scholar
  169. Zabel U et al (2002) Calcium-dependent membrane association sensitizes soluble guanylyl cyclase to nitric oxide. Nat Cell Biol 4:307–311PubMedCrossRefGoogle Scholar
  170. Zaccolo M, Movsesian MA (2007) cAMP and cGMP signaling cross-talk: role of phosphodiesterases and implications for cardiac pathophysiology. Circ Res 100:1569–1578PubMedCrossRefGoogle Scholar
  171. Zanfolin M et al (2006) Protective effects of BAY 41-2272 (sGC stimulator) on hypertension, heart, and cardiomyocyte hypertrophy induced by chronic L-NAME treatment in rats. J Cardiovasc Pharmacol 47:391–395PubMedGoogle Scholar
  172. Zhang ZS, Cheng HJ, Onishi K, Ohte N, Wannenburg T, Cheng CP (2005) Enhanced inhibition of L-type Ca2+ current by beta3-adrenergic stimulation in failing rat heart. J Pharmacol Exp Ther 315(3):1203–1211Google Scholar
  173. Zhang P et al (2007) Inducible nitric oxide synthase deficiency protects the heart from systolic overload-induced ventricular hypertrophy and congestive heart failure. Circ Res 100:1089–1098PubMedPubMedCentralCrossRefGoogle Scholar
  174. Zhang YH et al (2008) Reduced phospholamban phosphorylation is associated with impaired relaxation in left ventricular myocytes from neuronal NO synthase-deficient mice. Circ Res 102:242–249PubMedCrossRefGoogle Scholar
  175. Zhang M et al (2010) Myocardial remodeling is controlled by myocyte-targeted gene regulation of phosphodiesterase type 5. J Am Coll Cardiol 56:2021–2030PubMedPubMedCentralCrossRefGoogle Scholar
  176. Zhou Z et al (2008) Protein kinase G phosphorylates soluble guanylyl cyclase on serine 64 and inhibits its activity. Arterioscler Thromb Vasc Biol 28:1803–1810PubMedPubMedCentralCrossRefGoogle Scholar
  177. Ziolo MT (2008) The fork in the nitric oxide road: cyclic GMP or nitrosylation? Nitric Oxide 18:153–156PubMedPubMedCentralCrossRefGoogle Scholar
  178. Ziolo MT, Kohr MJ, Wang H (2008) Nitric oxide signaling and the regulation of myocardial function. J Mol Cell Cardiol 45:625–632PubMedPubMedCentralCrossRefGoogle Scholar
  179. Zoraghi R, Bessay EP, Corbin JD, Francis SH (2005) Structural and functional features in human PDE5A1 regulatory domain that provide for allosteric cGMP binding, dimerisation, and regulation. J Biol Chem 280:12051–12063PubMedCrossRefGoogle Scholar
  180. Zou MH, Shi C, Cohen RA (2002) Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J Clin Invest 109:817–826PubMedPubMedCentralCrossRefGoogle Scholar
  181. Zweier JL, Chen CA, Druhan LJ (2011) S-glutathionylation reshapes our understanding of endothelial nitric oxide synthase uncoupling and nitric oxide/reactive oxygen species-mediated signaling. Antioxid Redox Signal 14:1769–1775PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • J. Hammond
    • 1
  • J.-L. Balligand
    • 1
  1. 1.Institut de Recherche Experimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Université catholique de LouvainBrusselsBelgium

Personalised recommendations