Skip to main content

Modeling River-Induced Phosphorus Limitation in the Context of Coastal Hypoxia

  • Chapter
  • First Online:
Modeling Coastal Hypoxia

Abstract

The urban development of coastal areas and the increased use of chemical fertilizers over the last century have led to a worldwide expansion of coastal eutrophication and a significant increase in the occurrence and intensity of human-induced coastal hypoxia. Proportionally, nitrogen load has often increased more severely than phosphorus load and phosphorus limitation became a common seasonal phenomenon in many eutrophic coastal systems. Phosphorus limitation may alter the magnitude, timing, and location of phytoplankton production with potential effects on hypoxia. Yet, because of the difficulty in observing these effects, limited work has been carried out to assess the influence of P limitation on hypoxia. Models are thus useful tools for simulating the effects of river-induced phosphorus limitation on coastal hypoxic systems. Modeling P limitation is important to better understand the processes controlling hypoxia, to improve the predictive skill of hypoxia prediction models, and to design and evaluate nutrient management strategies for hypoxia mitigation. Here, we review the effects of phosphorus limitation on a continuum of coastal hypoxic systems, contrasting the effects of P limitation on systems that are primarily one-dimensional (or “flow-through”) like the Neuse River Estuary versus more dispersive open systems like the Mississippi River plume. We discuss modeling frameworks and techniques that are relevant in this context and summarize recent modeling work that quantitatively assesses the effect of phosphorus limitation on hypoxia development in the Mississippi River plume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bales JD, Robbins JC (1999) A dynamic water-quality modeling framework for the Neuse River estuary, North Carolina. No. 99-4017. US Department of the Interior, US Geological Survey

    Google Scholar 

  • Boesch DF (2002) Challenges and opportunities for science in reducing nutrient over-enrichment of coastal ecosystems. Estuaries 25:886–900. doi:10.1007/BF02804914

  • Burkholder JM, Dickey DA, Kinder CA et al (2006) Comprehensive trend analysis of nutrients and related variables in a large eutrophic estuary : a decadal study of anthropogenic and climatic influences 51:463–487. doi:10.4319/lo.2006.51.1_part_2.0463

  • Buzzelli C, Luettich R, Powers S et al (2002) Estimating the spatial extent of bottom-water hypoxia and habitat degradation in a shallow estuary. Mar Ecol Prog Ser 230:103–112. doi:10.3354/meps230103

    Article  Google Scholar 

  • Caraco N, Cole J, Likens GE (1990) A comparison of phosphorus immobilization in sediments of freshwater and coastal marine systems. Biogeochemistry 9:277–290. doi:10.1007/BF00000602

    Article  CAS  Google Scholar 

  • Conley DJ (2000) Biogeochemical nutrient cycles and nutrient management strategies. Hydrobiologia 410:87–96. doi:10.1023/A:1003784504005

    Article  Google Scholar 

  • Conley DJ, Carstensen J, Aigars J et al (2011) Hypoxia is increasing in the coastal zone of the Baltic Sea. Environ Sci Technol 45:6777–6783. doi:10.1021/es201212r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conley DJ, Humborg C, Rahm L et al (2002) Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry. Environ Sci Technol 36:5315–5320. doi:10.1021/es025763w

    Article  CAS  PubMed  Google Scholar 

  • Eilola K, Meier HEM, Almroth E (2009) On the dynamics of oxygen, phosphorus and cyanobacteria in the Baltic Sea; a model study. J Mar Syst 75:163–184. doi:10.1016/j.jmarsys.2008.08.009

    Article  Google Scholar 

  • Eldridge PM, Roelke DL (2010) Origins and scales of hypoxia on the Louisiana shelf: importance of seasonal plankton dynamics and river nutrients and discharge. Ecol Model 221:1028–1042. doi:10.1016/j.ecolmodel.2009.04.054

    Article  CAS  Google Scholar 

  • Fennel K, Brady D, DiToro D et al (2009) Modeling denitrification in aquatic sediments. Biogeochemistry 93:159–178. doi:10.1007/s10533-008-9270-z

    Article  CAS  Google Scholar 

  • Fennel K, Hu J, Laurent A et al (2013) Sensitivity of hypoxia predictions for the Northern Gulf of Mexico to sediment oxygen consumption and model nesting. J Geophys Res-Oceans 118:990–1002. doi:10.1002/jgrc.20077

    Article  CAS  Google Scholar 

  • Fennel K, Laurent A, Hetland R, Justić D, Ko DS, Lehrter J, Murrell M, Wang L, Yu L, Zhang W (2016) Effects of model physics on hypoxia simulations for the Northern Gulf of Mexico: a model intercomparison. J Geophys Res-Oceans 121. doi:10.1002/2015JC011577

  • Fennel K, Wilkin J, Levin J et al (2006) Nitrogen cycling in the Middle Atlantic Bight: results from a three-dimensional model and implications for the North Atlantic nitrogen budget. Glob Biogeochem Cycles 20:GB3007. doi:10.1029/2005GB002456

  • Fennel K, Wilkin J, Previdi M, Najjar R (2008) Denitrification effects on air-sea CO2 flux in the coastal ocean: simulations for the Northwest North Atlantic. Geophys Res Lett 35:L24608. doi:10.1029/2008GL036147

    Article  Google Scholar 

  • Fisher TR, Gustafson AB, Sellner K et al (1999) Spatial and temporal variation of resource limitation in Chesapeake Bay. Mar Biol 133:763–778. doi:10.1007/s002270050518

  • Fisher TR, Peele ER, Ammerman JW, Harding LW (1992) Nutrient limitation of phytoplankton in Chesapeake Bay. Mar Ecol Prog Ser 90:51–63

    Article  Google Scholar 

  • Flynn KJ (2003) Modelling multi-nutrient interactions in phytoplankton; balancing simplicity and realism. Prog Oceanogr 56:249–279. doi:10.1016/S0079-6611(03)00006-5

    Article  Google Scholar 

  • Forrest DR, Hetland RD, DiMarco SF (2011) Multivariable statistical regression models of the areal extent of hypoxia over the Texas-Louisiana continental shelf. Environ Res Lett 6:045002. doi:10.1088/1748-9326/6/4/045002

    Article  Google Scholar 

  • Granéli E, Wallström K, Larsson U et al (1990) Nutrient limitation of primary production in the Baltic Sea area. Ambio 19:142–151

    Google Scholar 

  • Greene RM, Lehrter JC, Hagy JD III (2009) Multiple regression models for hindcasting and forecasting midsummer hypoxia in the Gulf of Mexico. Ecol Appl 19:1161–1175. doi:10.1890/08-0035.1

    Article  PubMed  Google Scholar 

  • Gustafsson E (2012) Modelled long-term development of Hypoxic area and nutrient pools in the Baltic Proper. J Mar Syst 94:120–134. doi:10.1016/j.jmarsys.2011.11.012

    Article  Google Scholar 

  • Hagy JD, Boynton WR, Keefe CW, Wood KV (2004) Hypoxia in Chesapeake Bay, 1950–2001: long-term change in relation to nutrient loading and river flow. Estuaries 27:634–658. doi:10.1007/BF02907650

  • Haidvogel DB, Arango H, Budgell WP et al (2008) Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the regional ocean modeling system. J Comput Phys 227:3595–3624. doi:10.1016/j.jcp.2007.06.016

    Article  Google Scholar 

  • Harrison JA, Bouwman AF, Mayorga E, Seitzinger S (2010) Magnitudes and sources of dissolved inorganic phosphorus inputs to surface fresh waters and the coastal zone: a new global model. Glob Biogeochem Cycles 24:GB1003. doi:10.1029/2009GB003590

  • HELCOM (2013) Review of the fifth Baltic Sea pollution load compilation for the 2013 HELCOM Ministerial Meeting

    Google Scholar 

  • Hetland RD, DiMarco SF (2008) How does the character of oxygen demand control the structure of hypoxia on the Texas-Louisiana continental shelf? J Mar Syst 70:49–62. doi:10.1016/j.jmarsys.2007.03.002

    Article  Google Scholar 

  • Hetland RD, DiMarco SF (2012) Skill assessment of a hydrodynamic model of circulation over the Texas-Louisiana continental shelf. Ocean Model 43–44:64–76. doi:10.1016/j.ocemod.2011.11.009

    Article  Google Scholar 

  • Hirsch RM, Moyer DL, Phillips SW (2013) Chesapeake Bay program indicator framework

    Google Scholar 

  • Howarth RW, Marino R (2006) Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol Oceanogr 51:364–376. doi:10.4319/lo.2006.51.1_part_2.0364

  • Humborg C, Fennel K, Pastuszak M, Fennel W (2000) A box model approach for a long-term assessment of estuarine eutrophication, Szczecin Lagoon, southern Baltic. J Mar Syst 25:387–403. doi:10.1016/S0924-7963(00)00029-4

    Article  Google Scholar 

  • Ingall E, Jahnke R (1997) Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis. Mar Geol 139:219–229. doi:10.1016/S0025-3227(96)00112-0

  • Irby I, Friedrichs MAM, Friedrichs CT, Bever AJ, Hood RR, Lanerolle LWJ, Li M, Linker L, Scully ME, Sellner K, ShenJ Testa J, Wang H, Wang P, Xia M (2016) Challenges associated with modeling low-oxygen waters in Chesapeake Bay: a multiple model comparison. Biogeosciences 13:2011–2028. doi:10.5194/bg-13-2011-2016

    Article  CAS  Google Scholar 

  • John EH, Flynn KJ (2000) Modelling phosphate transport and assimilation in microalgae; how much complexity is warranted? Ecol Model 125:145–157. doi:10.1016/S0304-3800(99)00178-7

    Article  CAS  Google Scholar 

  • Justić D, Wang L (2014) Assessing temporal and spatial variability of hypoxia over the inner Louisiana–upper Texas shelf: application of an unstructured-grid three-dimensional coupled hydrodynamic-water quality model. Cont Shelf Res. doi:10.1016/j.csr.2013.08.006

    Google Scholar 

  • Kemp W, Boynton W, Adolf J et al (2005) Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Mar Ecol Prog Ser 303:1–29. doi:10.3354/meps303001

    Article  Google Scholar 

  • Kemp WM, Sampou P, Cafrey J et al (1990) Ammonium recycling versus denitrification Chesapeake Bay sediments. Limnol Oceanogr 35:1545–1563. doi:10.4319/lo.1990.35.7.1545

    Article  CAS  Google Scholar 

  • Krauss W (2001) Baltic Sea circulation. Encycl Ocean Sci 236–244 Elsevier Ltd

    Google Scholar 

  • Laurent A, Fennel K (2014) Simulated reduction of hypoxia in the Northern Gulf of Mexico due to phosphorus limitation. Elem Sci Anth 2:000022. doi:10.12952/journal.elementa.000022

    Article  Google Scholar 

  • Laurent A, Fennel K, Hu J, Hetland R (2012) Simulating the effects of phosphorus limitation in the Mississippi and Atchafalaya River plumes. Biogeosciences 9:4707–4723. doi:10.5194/bg-9-4707-2012

    Article  CAS  Google Scholar 

  • Laurent A, Fennel K, Wilson R, Lehrter J, Devereux R (2016) Parameterization of biogeochemical sediment–water fluxes using in situ measurements and a diagenetic model. Biogeosciences 13:77–94. doi:10.5194/bg-13-77-2016

    Article  Google Scholar 

  • Lohrenz SE, Fahnenstiel GL, Redalje DG et al (1997) Variations in primary production of Northern Gulf of Mexico continental shelf waters linked to nutrient inputs from the Mississippi River. Mar Ecol Prog Ser 155:45–54. doi:10.3354/meps155045

    Article  CAS  Google Scholar 

  • McManus J, Berelson WM, Coale KH et al (1997) Phosphorus regeneration in continental margin sediments. Geochim Cosmochim Ac 61:2891–2907. doi:10.1016/S0016-7037(97)00138-5

    Article  CAS  Google Scholar 

  • Murphy RR, Kemp WM, Ball WP (2011) Long-term trends in Chesapeake Bay seasonal hypoxia, stratification, and nutrient loading. Estuaries Coasts 34:1293–1309. doi:10.1007/s12237-011-9413-7

    Article  CAS  Google Scholar 

  • Nausch GI, Nehring D, Aertebjerg G (1999) Anthropogenic nutrient load of the Baltic Sea. Limnologica 29:233–241

    Article  CAS  Google Scholar 

  • Neumann T, Fennel W, Kremp C (2002) Experimental simulations with an ecosystem model of the Baltic Sea: a nutrient load reduction experiment. Glob Biogeochem Cycles 16:1033. doi:10.1029/2001GB001450

    Article  Google Scholar 

  • Neumann T, Schernewski G (2008) Eutrophication in the Baltic Sea and shifts in nitrogen fixation analyzed with a 3D ecosystem model. J Mar Syst 74:592–602. doi:10.1016/j.jmarsys.2008.05.003

    Article  Google Scholar 

  • O’Neill RV, DeAngelis DL, Pastor JJ et al (1989) Multiple nutrient limitations in ecological models. Ecol Model 46:147–163. doi:10.1016/0304-3800(89)90015-X

    Article  Google Scholar 

  • Obenour DR, Michalak AM, Zhou Y, Scavia D (2012) Quantifying the impacts of stratification and nutrient loading on hypoxia in the Northern Gulf of Mexico. Env Sci Technol 46:5489. doi:10.1021/es204481a

    Article  CAS  Google Scholar 

  • Obenour DR, Scavia D, Rabalais NN et al (2013) Retrospective analysis of midsummer Hypoxic area and volume in the Northern Gulf of Mexico, 1985–2011. Environ Sci Technol 47:9808–9815. doi:10.1021/es400983g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paerl H (2009) Controlling eutrophication along the freshwater–marine continuum: dual nutrient (N and P) reductions are essential. Estuaries Coasts 32:593–601. doi:10.1007/s12237-009-9158-8

    Article  CAS  Google Scholar 

  • Paerl HW, Pinckney JL, Fear JM, Peierls BL (1998) Ecosystem responses to internal and watershed organic matter loading: consequences for hypoxia in the eutrophying Neuse River Estuary, North Carolina, USA. Mar Ecol Prog Ser 166:17–25

    Article  CAS  Google Scholar 

  • Paerl HW, Valdes LM, Joyner AR et al (2004) Solving problems resulting from solutions: evolution of a dual nutrient management strategy for the eutrophying Neuse River Estuary, North Carolina. Env Sci Technol 38:3068–3073. doi:10.1021/es0352350

    Article  CAS  Google Scholar 

  • Prasad MBK, Long W, Zhang X et al (2011) Predicting dissolved oxygen in the Chesapeake Bay: applications and implications. Aquat Sci 73:437–451. doi:10.1007/s00027-011-0191-x

    Article  CAS  Google Scholar 

  • Quigg A, Sylvan JB, Gustafson AB et al (2011) Going west: nutrient limitation of primary production in the Northern Gulf of Mexico and the importance of the Atchafalaya River. Aquat Geochem 17:519–544. doi:10.1007/s10498-011-9134-3

    Article  CAS  Google Scholar 

  • Quiñones-Rivera ZJ, Wissel B, Rabalais NN, Justic D (2010) Effects of biological and physical factors on seasonal oxygen dynamics in a stratified, eutrophic coastal ecosystem. Limnol Oceanogr 55:289–304. doi:10.4319/lo.2010.55.1.0289

    Article  Google Scholar 

  • Rabalais N, Turner RE, Dortch Q et al (2002) Nutrient-enhanced productivity in the Northern Gulf of Mexico: past, present and future. Hydrobiologia 475–476:39–63. doi:10.1023/A:1020388503274

    Article  Google Scholar 

  • Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea-water. In: Hill MN (ed) The compensation of sea water comparative and descriptive oceanography. Wiley, New York, pp 26–77

    Google Scholar 

  • Roelke DL, Eldridge PM, Cifuentes LA (1999) A model of phytoplankton competition for limiting and nonlimiting nutrients: implications for development of estuarine and nearshore management schemes. Estuaries 22:92–104

    Article  CAS  Google Scholar 

  • Scavia D, Donnelly KA (2007) Reassessing hypoxia forecasts for the Gulf of Mexico. Env Sci Technol 41:8111–8117. doi:10.1021/es0714235

    Article  CAS  Google Scholar 

  • Schiller RV, Kourafalou VH, Hogan P, Walker ND (2011) The dynamics of the Mississippi River plume: impact of topography, wind and offshore forcing on the fate of plume waters. J Geophys Res 116:C06029. doi:10.1029/2010JC006883

    Article  Google Scholar 

  • Stålnacke P, Grimvall A, Sundblad K, Tonderski A (1999) Estimation of riverine loads of nitrogen and phosphorus to the Baltic Sea, 1970–1993. Environ Monit Assess 58:173–200. doi:10.1023/A:1006073015871

  • Stow CA, Borsuk ME (2000) Neuse river estuary modeling and monitoring project stage 1: an examination of long term nutrient data in the Neuse River watershed. Duke University, Durham, North Carolina

    Google Scholar 

  • Stow CA, Borsuk ME, Stanley DW (2001) Long-term changes in watershed nutrient inputs and riverine exports in the Neuse River, North Carolina. Water Res 35:1489–99. doi:10.1016/S0043-1354(00)00402-4

  • Sylvan JB, Dortch Q, Nelson DM et al (2006) Phosphorus limits phytoplankton growth on the Louisiana shelf during the period of hypoxia formation. Environ Sci Technol 40:7548–7553. doi:10.1021/es061417t

    Article  CAS  PubMed  Google Scholar 

  • Sylvan JB, Quigg A, Tozzi S, Ammerman JW (2007) Eutrophication-induced phosphorus limitation in the Mississippi River Plume: evidence from fast repetition rate fluorometry. Limnol Ocean 52:2679–2685. doi:10.4319/lo.2007.52.6.2679

    Article  CAS  Google Scholar 

  • Turner RE, Rabalais NN, Justic D (2006) Predicting summer hypoxia in the Northern Gulf of Mexico: riverine N, P, and Si loading. Mar Pollut Bull 52:139–148. doi:10.1016/j.marpolbul.2005.08.012

    Article  CAS  PubMed  Google Scholar 

  • Vahtera E, Conley D, Gustafsson BG, Kuosa H, Pitkänen H, Savchuk OP, Tamminen T, Viitasalo M, Voss M, Wasmund N, Wulff F (2007) Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio 36:186–194. doi:10.1579/0044-7447(2007)36[186:IEFENC]2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Justić D (2009) A modeling study of the physical processes affecting the development of seasonal hypoxia over the inner Louisiana-Texas shelf: circulation and stratification. Cont Shelf Res 29:1464–1476. doi:10.1016/j.csr.2009.03.014

    Article  Google Scholar 

  • Wang P, Linker LC, Shenk GW (2016) Using geographically isolated loading scenarios to analyze nitrogen and phosphorus exchanges and explore tailored nutrient control strategies for efficient management. Environ Model Assess 21:437–454. doi:10.1007/s10666-015-9487-x

    Article  Google Scholar 

  • Wilson RF, Fennel K, Paul Mattern J (2013) Simulating sediment–water exchange of nutrients and oxygen: a comparative assessment of models against mesocosm observations. Cont Shelf Res 63:69–84. doi:10.1016/j.csr.2013.05.003

    Article  Google Scholar 

  • Wiseman WJ, Rabalais NN, Turner RE, Dinnel SP, MacNaughton A (1997) Seasonal and interannual variability within the Louisiana coastal current: stratification and hypoxia. J Mar Syst 12:237–248. doi:10.1016/S0924-7963(96)00100-5

    Article  Google Scholar 

  • Wool TA, Davie SR, Rodriguez HN (2003) Development of three-dimensional hydrodynamic and water quality models to support total maximum daily load decision process for the Neuse River Estuary, North Carolina. J Water Resour Plann Manage 129:295–306. doi:10.1061/(ASCE)0733-9496(2003)129:4(295)

    Article  Google Scholar 

  • Yu L, Fennel K, Laurent A (2015a) A modeling study of physical controls on hypoxia generation in the Northern Gulf of Mexico. J Geophys Res-Oceans 120:5019–5039. doi:10.1002/2014JC010634

    Article  CAS  Google Scholar 

  • Yu L, Fennel K, Laurent A, Murrell MC, Lehrter JC (2015b) Numerical analysis of the primary processes controlling oxygen dynamics on the Louisiana shelf. Biogeosciences 12:2063–2076. doi:10.5194/bg-12-2063-2015

    Article  Google Scholar 

  • Zhang J, Gilbert D, Gooday A et al (2010) Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development. Biogeosciences 7:1443–1467. doi:10.5194/bg-7-1443-2010

  • Zhang X, Hetland RD, Marta-Almeida M, DiMarco SF (2012) A numerical investigation of the Mississippi and Atchafalaya freshwater transport, filling and flushing times on the Texas-Louisiana Shelf. J Geophys Res 117:C11009. doi:10.1029/2012JC008108

    Google Scholar 

Download references

Acknowledgments

This work was supported by NOAA CSCOR grants NA06N0S4780198 and NA09N0S4780208. This is NOAA NGOMEX publication number 215.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Laurent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Laurent, A., Fennel, K. (2017). Modeling River-Induced Phosphorus Limitation in the Context of Coastal Hypoxia. In: Justic, D., Rose, K., Hetland, R., Fennel, K. (eds) Modeling Coastal Hypoxia. Springer, Cham. https://doi.org/10.1007/978-3-319-54571-4_7

Download citation

Publish with us

Policies and ethics