Skip to main content

A Reduced Complexity, Hybrid Empirical-Mechanistic Model of Eutrophication and Hypoxia in Shallow Marine Ecosystems

  • Chapter
  • First Online:
Modeling Coastal Hypoxia

Abstract

Numerical simulation models have a long history as research tools for the study of coastal marine ecosystems, and are increasingly being used to inform management, particularly related to nutrient-fueled eutrophication. Demand for modeling assessments is rapidly increasing, and managers need generally applicable tools that can be rapidly applied with limited resources. Additionally, a variety of calls have been made for the development of reduced complexity models for use in parallel with more complex models. We propose a simplified, empirically constrained modeling approach that simulates the first-order processes involved in estuarine eutrophication, contains a small number of aggregated state variables and a reduced set of parameters, and combines traditional mechanistic formulations with robust, data-driven, empirical functions shown to apply across multiple systems. The model was applied to Greenwich Bay, RI (USA), a subestuary of Narragansett Bay, and reproduced the annual cycles of phytoplankton biomass, dissolved inorganic nutrients, and dissolved oxygen, events including phytoplankton blooms and development of hypoxia, and the rate of annual primary production. While the model was relatively robust to changes in parameter values and initial conditions, sensitivity analysis revealed the need for better constraint of the phytoplankton carbon-to-chlorophyll ratio, temperature dependence of phytoplankton production, and parameters associated with our formulations for water column respiration and the flux of phytoplankton carbon to the sediments. This reduced complexity, hybrid empirical-mechanistic approach provides a rapidly deployable modeling tool applicable to a wide variety of shallow estuarine systems.

Dr. Nixon is deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelrhman MA (2005) Simplified modeling of flushing and residence times in 42 embayments in New England, USA, with special attention to Greenwich Bay, Rhode Island. Est. Coast. Shelf Sci. 62:339–351

    Article  Google Scholar 

  • Baird ME, Walker SJ, Wallace BB, Webster IT, Parslow JS (2003) The use of mechanistic descriptions of algal growth and zooplankton grazing in an estuarine eutrophication model. Est. Coast. Shelf Sci. 56(3–4):685–695

    Article  Google Scholar 

  • Beatty LL (1991) The response of benthic suspension feeders and their grazing impact on phytoplankton in eutrophied coastal ecosystems. PhD dissertation, University of Rhode Island, Kingston, RI, 351 pp

    Google Scholar 

  • Boynton WR, Murray L, Hagy JD, Stokes C, Kemp WM, (1996) A comparative analysis of eutrophication patterns in a temperate coastal lagoon. Estuaries 19(2), 408–412

    Google Scholar 

  • Bricker S, Longstaff B, Dennison W, Jones A, Boicourt K, Wicks C, Woerner J (2007) Effects of nutrient enrichment in the nation’s estuaries: a decade of change. NOAA Coastal Ocean Program Decision Analysis Series No. 26, National Centers for Coastal Ocean Science, Silver Spring, MD, 328 pp

    Google Scholar 

  • Brush MJ (2002) Development of a numerical model for shallow marine ecosystems with application to Greenwich Bay, RI. PhD Dissertation, University of Rhode Island, Kingston, RI, 560 pp

    Google Scholar 

  • Brush MJ, Brawley JW (2009) Adapting the light · biomass (BZI) models of phytoplankton primary production to shallow marine ecosystems. J Marine Syst 75:227–235

    Article  Google Scholar 

  • Brush MJ, Brawley JW, Nixon SW, Kremer JN (2002) Modeling phytoplankton production: problems with the Eppley curve and an empirical alternative. Mar Ecol Prog Ser 238:31–45

    Article  Google Scholar 

  • Brush MJ, Harris LA (2010) Introduction to the special issue of Ecological Modelling: advances in modeling estuarine and coastal ecosystems: approaches, validation, and applications. Ecol Model 221:965–968

    Article  Google Scholar 

  • Brush MJ, Harris LA (2016) Ecological modeling. In: Kennish MJ (ed) Encyclopedia of Estuaries. Encyclopedia of Earth Sciences Series. Springer, The Netherlands, pp 214–223

    Google Scholar 

  • Brush MJ, Nixon SW (2010) Modeling the role of macroalgae in a shallow sub-estuary of Narragansett Nay, RI (USA). Ecol Model 221:1065–1079

    Article  CAS  Google Scholar 

  • Caffrey JM (2003) Production, respiration and net ecosystem metabolism in U.S. estuaries. Environ Monit Assess 81:207–219

    Article  PubMed  Google Scholar 

  • Caffrey JM, Cloern JE, Grenz C (1998) Changes in production and respiration during a spring phytoplankton bloom in San Francisco Bay, California, USA: implications for net ecosystem metabolism. Mar Ecol Prog Ser 172:1–12

    Article  Google Scholar 

  • Cerco CF, Noel MR (2004a) The 2002 Chesapeake Bay Eutrophication Model. Report 903-R-04-004, Chesapeake Bay Program Office. U.S. Environmental Protection Agency, Annapolis, MD, p 349

    Google Scholar 

  • Cerco CF, Noel MR (2004b) Process-based primary production modeling in Chesapeake Bay. Mar Ecol Prog Ser 282:45–58

    Article  Google Scholar 

  • Chen C, Tian R, Beardsley RC, Qi J, Xu Q (2010) Modeling 2008 in Massachusetts Bay using an upgraded unstructured-grid Bays Eutrophication Model. Report 2010–2015, Massachusetts Water Resources Authority, Boston, MA, 118 pp

    Google Scholar 

  • Cloern JE, Grenz C, Vidergar-Lucas L (1995) An empirical model of the phytoplankton chlorophyll:carbon ratio—the conversion factor between productivity and growth rate. Limnol Oceanogr 40(7):1313–1321

    Article  Google Scholar 

  • Cole BE (1989) Temporal and spatial patterns of phytoplankton production in Tomales Bay, California, USA. Est Coast Shelf Sci 28:103–115

    Article  CAS  Google Scholar 

  • Cole BE, Cloern JE (1987) An empirical model for estimating phytoplankton productivity in estuaries. Mar Ecol Prog Ser 36:299–305

    Article  Google Scholar 

  • Denman KL (2003) Modelling planktonic ecosystems: parameterizing complexity. Prog Oceanogr 57(3–4):429–452

    Article  Google Scholar 

  • Doering PH, Oviatt CA (1986) Application of filtration rate models to field populations of bivalves: an assessment using experimental mesocosms. Mar Ecol Prog Ser 31:265–275

    Article  Google Scholar 

  • Duarte CM, Amthor JS, DeAngelis DL, Joyce LA, Maranger RJ, Pace ML, Pastor J, Running SW (2003) The limits to models in ecology. In: Canham CD, Cole JJ, Lauenroth WK (eds) Models in ecosystem Science. Princeton University Press, Princeton, NJ, pp 437–451

    Google Scholar 

  • Durbin EG, Krawiec RW, Smayda TJ (1975) Seasonal studies on the relative importance of different size fractions of phytoplankton in Narragansett Bay (USA). Mar Biol 32(3):271–287

    Article  CAS  Google Scholar 

  • EPA (Environmental Protection Agency) (1999) Protocol for developing nutrient TMDLs. U.S. EPA report 841-B-99-007, U.S. EPA Office of Water, Washington, DC, 135 pp

    Google Scholar 

  • Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull 70(4):1063–1085

    Google Scholar 

  • Erikson LH (1998) Flushing times of Greenwich Bay, Rhode Island: estimates based on freshwater inputs. M.S. thesis, University of Rhode Island, Kingston, RI, 178 pp

    Google Scholar 

  • Fourqurean JW, Webb KL, Hollibaugh JT, Smith SV (1997) Contributions of the plankton community to ecosystem respiration, Tomales Bay, California. Est Coast Shelf Sci 44(4):493–505

    Article  CAS  Google Scholar 

  • Fraher J (1991) Atmospheric wet and dry deposition of fixed nitrogen to Narragansett Bay. M.S. thesis, University of Rhode Island, Kingston, RI, 165 pp

    Google Scholar 

  • Friedrichs MAM, Hood RR, Wiggert JD (2006) Ecosystem model complexity versus physical forcing: quantification of their relative impact with assimilated Arabian Sea data. Deep-Sea Res Pt II 53:576–600

    Article  Google Scholar 

  • Frithsen JB, Keller AA, Pilson MEQ (1985a) Effects of inorganic nutrient additions in coastal areas: a mesocosm experiment data report, vol 1. MERL series, report no 3, University of Rhode Island, Kingston, RI, 176 pp

    Google Scholar 

  • Frithsen JB, Keller AA, Pilson MEQ (1985b) Effects of inorganic nutrient additions in coastal areas: a mesocosm experiment data report, vol 3. MERL series, report no 5, University of Rhode Island, Kingston, RI, 244 pp

    Google Scholar 

  • Frithsen JB, Lane PA, Keller AA, Pilson MEQ (1985c) Effects of inorganic nutrient additions in coastal areas: a mesocosm experiment data report, vol 2. MERL series, report no 4, University of Rhode Island, Kingston, RI, 330 pp

    Google Scholar 

  • Fulton EA, Smith ADM, Johnson CR (2003) Effect of complexity on marine ecosystem models. Mar Ecol Prog Ser 253:1–16

    Article  Google Scholar 

  • Fulton EA, Smith ADM, Johnson CR (2004) Effects of spatial resolution on the performance and interpretation of marine ecosystem models. Ecol Model 176(1–2):27–42

    Article  Google Scholar 

  • Furnas MJ, Hitchcock GL, Smayda TJ (1976) Nutrient-phytoplankton relationships in Narragansett Bay during the 1974 spring bloom. In: Wiley M (ed) Estuarine Processes, vol I., Uses, stresses, and adaptation to the estuaryAcademic Press, New York, NY, pp 118–133

    Chapter  Google Scholar 

  • Ganju NK, Brush MJ, Rashleigh B, Aretxabaleta AL, del Barrio P, Forsyth M, Grear JS, Harris LA, Lake SJ, McCardell G, O’Donnell J, Ralston DK, Signell RP, Testa JM, Vaudrey JMP (2016) Progress and challenges in coupled hydrodynamic-ecological estuarine modeling. Est Coast. 39:311–332

    Article  Google Scholar 

  • Ganz A, Lazar N, Valliere A (1994) Quahaug management project, phase I: Greenwich Bay. Report to the Narragansett Bay Project, Rhode Island Division of Fish, Wildlife and Estuarine Resources, Coastal Fisheries Lab, Wakefield, RI, 58 pp

    Google Scholar 

  • Geider RJ, MacIntyre HL, Kana TM (1998) A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature. Limnol Oceanogr 43(4):679–694

    Article  CAS  Google Scholar 

  • Giblin AE, Vallino JJ (2003) The role of models in addressing coastal eutrophication. In: Canham CD, Cole JJ, Lauenroth WK (eds) Models in ecosystem science. Princeton University Press, Princeton, NJ, pp 327–343

    Google Scholar 

  • Goebel NL, Kremer JN (2007) Temporal and spatial variability of photosynthetic parameters and community respiration in Long Island Sound. Mar Ecol Prog Ser 329:23–42

    Article  CAS  Google Scholar 

  • Granger S, Brush M, Buckley B, Traber M, Richardson M, Nixon SW (2000) An assessment of eutrophication in Greenwich Bay. Paper no. 1 In: Schwartz M (ed) Restoring water quality in Greenwich Bay: a whitepaper series. Rhode Island Sea Grant College Program, Narragansett, RI, 19 pp

    Google Scholar 

  • Grangere K, Lefebvre S, Menesguen A, Jouenne F (2009) On the interest of using field primary production data to calibrate phytoplankton rate processes in ecosystem models. Est. Coast. Shelf Sci. 81(2):169–178

    Article  Google Scholar 

  • Harris GP, Bigelow SW, Cole JJ, Cyr H, Janus LL, Kinzig AP, Kitchell JF, Likens GE, Reckhow KH, Scavia D, Soto D, Talbot LM, Templer PH (2003) The role of models in ecosystem management. In: Canham CD, Cole JJ, Lauenroth WK (eds) Models in ecosystem science. Princeton University Press, Princeton, NJ, pp 299–307

    Google Scholar 

  • Harris LA, Brush MJ (2012) Bridging the gap between empirical and mechanistic models of aquatic primary production with the metabolic theory of ecology: an example from estuarine ecosystems. Ecol Model 233:83–89

    Article  Google Scholar 

  • Hibbert CJ (1977) Energy relations of the bivalve Mercenaria mercenaria on an intertidal mudflat. Mar Biol 44:77–84

    Article  Google Scholar 

  • Holligan PM, IeB Williams PJ, Purdie D, Harris RP (1984) Photosynthesis, respiration and nitrogen supply of plankton populations in stratified, frontal and tidally mixed shelf waters. Mar Ecol Progr Ser 17:201–213

    Google Scholar 

  • Hopkinson CS Jr, Smith EM (2005) Estuarine respiration: an overview of benthic, pelagic, and whole system respiration. In: Giorgio PA del IeB Williams PJ (eds) Respiration in aquatic systems. Oxford University Press, Oxford, pp 122–146

    Google Scholar 

  • Howarth RW, Marino R, Garritt R, Sherman D (1992) Ecosystem respiration and organic carbon processing in a large, tidally influenced river: the Hudson River. Biogeochemistry 16:83–102

    Article  CAS  Google Scholar 

  • HydroQual (1991) Water quality modeling analysis of hypoxia in Long Island Sound. Report to the Management Committee of the Long Island Sound Estuary Study and the New England Interstate Water Pollution Control Commission, HydroQual Inc., Mahwah, NJ, 280 pp

    Google Scholar 

  • Iriarte A, Daneri G, Garcia VMT, Purdie DA, Crawford DW (1991) Plankton community respiration and its relationship to chlorophyll a concentration in marine coastal waters. Oceanol Acta 14(4):379–388

    Google Scholar 

  • Jensen LM, Sand-Jensen K, Marcher S, Hansen M (1990) Plankton community respiration along a nutrient gradient in a shallow Danish estuary. Mar Ecol Progr Ser 61(1–2):75–85

    Article  Google Scholar 

  • Jiang MS, Zhou M (2008) Massachusetts Bay Eutrophication Model: 2005 simulation. Report 2008–2013 Massachusetts Water Resources Authority, Boston, MA, 85 pp

    Google Scholar 

  • Keller AA (1986) Modeling the productivity of natural phytoplankton populations using mesocosm data along a nutrient gradient. PhD dissertation, University of Rhode Island, Kingston, RI, 240 pp

    Google Scholar 

  • Keller AA (1988) Estimating phytoplankton productivity from light availability and biomass in the MERL mesocosms and Narragansett Bay. Mar Ecol Progr Ser 45:159–168

    Article  Google Scholar 

  • Kelly JR, Doering PH (1997) Monitoring and modeling primary production in coastal waters: studies in Massachusetts Bay 1992–1994. Mar Ecol Progr Ser 148:155–168

    Article  Google Scholar 

  • Kemp WM, Sampou PA, Garber J, Tuttle J, Boynton WR (1992) Seasonal depletion of oxygen from bottom waters of Chesapeake Bay: roles of benthic and planktonic respiration and physical exchange processes. Mar Ecol Progr Ser 85(1–2):137–152

    Article  CAS  Google Scholar 

  • Kremer JN, Nixon SW (1978) A coastal marine ecosystem: simulation and analysis. Springer, New York, NY 217 pp

    Book  Google Scholar 

  • Kremer JN, Vaudrey J, Ullman D, Bergondo D, LaSota N, Kincaid C, Codiga D, Brush MJ (2010) Simulating property exchange in estuarine ecosystem models at ecologically appropriate scales. Ecol Model 221(7):1080–1088

    Google Scholar 

  • Lefèvre N, Taylor AH, Gilbert FJ, Geider RJ (2003) Modeling carbon to nitrogen and carbon to chlorophyll a ratios in the ocean at low latitudes: evaluation of the role of physiological plasticity. Limnol Oceanogr 48(5):1796–1807

    Article  Google Scholar 

  • Levins R (1966) The strategy of model building in population biology. Am Sci 54:421–431

    Google Scholar 

  • Li Y, Smayda TJ (1998) Temporal variability of chlorophyll in Narragansett Bay, 1973–1990. ICES J Mar Sci 55(4):661–667

    Article  Google Scholar 

  • Loosanoff VL (1939) Effect of temperature upon shell movements of clams, Venus mercenaria (L). Biol Bull 76:171–182

    Article  Google Scholar 

  • Marino R, Howarth RW (1993) Atmospheric oxygen exchange in the Hudson River: dome measurements and comparison with other natural waters. Estuaries 16(3A):433–445

    Article  CAS  Google Scholar 

  • McGlathery KJ, Sundbäck K, Anderson IC (2007) Eutrophication in shallow coastal bays and lagoons: the role of plants in the coastal filter. Mar Ecol Progr Ser 348:1–18

    Article  CAS  Google Scholar 

  • Ménesguen A, Cugier P, Loyer S, Vanhoutte-Brunier A, Hoch T, Guillaud J-F, Gohin F (2007) Two- or three-layered box-models versus fine 3D models for coastal ecological modelling? A comparative study in the English Channel (Western Europe). J Marine Syst 64(1–4):47–65

    Article  Google Scholar 

  • Moncoiffe G, Alvarez-Salgado XA, Figueiras FG, Savidge G (2000) Seasonal and short-time-scale dynamics of microplankton community production and respiration in an inshore upwelling system. Mar Ecol Progr Ser 196:111–126

    Article  CAS  Google Scholar 

  • NGDC (National Geophysical Data Center) (1996) GEOphysical DAta System for hydrographic survey data (CD-ROM database). U.S. National Oceanic and Atmospheric Administration, Boulder, CO

    Google Scholar 

  • Nixon SW (1986) Nutrient dynamics and the productivity of marine coastal waters. In: Halwagy R, Clayton D, Behbehani M (eds) Marine environment and pollution. The Alden Press, Oxford, pp 97–115

    Google Scholar 

  • Nixon SW, Fulweiler RW, Buckley BA, Granger SL, Nowicki BL, Henry KM (2009) The impact of changing climate on phenology, productivity, and benthic-pelagic-coupling in Narragansett Bay. Est Coast Shelf Sci 82:1–18

    Article  CAS  Google Scholar 

  • Nixon SW, Ammerman JW, Atkinson LP, Berounsky VM, Billen G, Boicourt WC, Boynton WR, Church TM, DiToro DM, Elmgren R, Garber JH, Giblin AE, Jahnke RA, Owens NJP, Pilson MEQ, Seitzinger SP (1996) The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. Biogeochemistry 35:141–180

    Article  CAS  Google Scholar 

  • Nixon S, Buckley B, Granger S, Bintz J (2001) Response of very shallow marine ecosystems to nutrient enrichment. Hum Ecol Risk Assess 7:1457–1481

    Article  Google Scholar 

  • Nixon SW, Granger SL, Nowicki BL (1995) An assessment of the annual mass balance of carbon, nitrogen, and phosphorus in Narragansett Bay. Biogeochemistry 31:15–61

    Article  Google Scholar 

  • Nixon SW, Oviatt CA (1973) Ecology of a New England salt marsh. Ecol Monogr 43:463–498

    Article  Google Scholar 

  • Nixon SW, Oviatt CA, Frithsen J, Sullivan B (1986) Nutrients and the productivity of estuarine and coastal marine ecosystems. J Limnol Soc South Afr 12(1/2):43–71

    CAS  Google Scholar 

  • Nixon SW, Oviatt CA, Hale SS (1976) Nitrogen regeneration and the metabolism of coastal marine bottom communities. In: Anderson JM, Macfadyen A (eds) The role of terrestrial and aquatic organisms in decomposition processes. Blackwell Scientific, Oxford, pp 269–283

    Google Scholar 

  • Nowicki BL (1983) Benthic community metabolism in a coastal lagoon ecosystem. M.S. thesis, University of Rhode Island, Kingston, RI, 109 pp

    Google Scholar 

  • Nowicki BL, Oviatt CA (1990) Are estuaries traps for anthropogenic nutrients? Evidence from estuarine mesocosms. Mar Ecol Progr Ser 66:131–146

    Article  CAS  Google Scholar 

  • NRC (National Research Council) (2000) Clean coastal waters: understanding and reducing the effects of nutrient pollution. National Academy Press, Washington, DC, 405 pp

    Google Scholar 

  • Obenour DR, Michalak A, Scavia D (2014) Assessing biophysical controls on Gulf of Mexico hypoxia through probabilistic modeling. Ecol Appl 25(2):492–505

    Article  Google Scholar 

  • Odum HT (1994) Ecological and general systems: an introduction to systems ecology, 2nd edn. University Press of Colorado, Niwot, CO 644 pp

    Google Scholar 

  • Officer CB (1980) Box models revisited. In: Hamilton P, MacDonald KB (eds) Estuarine and wetland processes with emphasis on modeling. Plenum Press, New York, NY, pp 65–114

    Chapter  Google Scholar 

  • Officer CB, Kester DR (1991) On estimating the non-advective tidal exchanges and advective gravitational circulation exchanges in an estuary. Est Coast Shelf Sci 32:99–103

    Article  Google Scholar 

  • Oviatt C, Buckley B, Nixon S (1981) Annual phytoplankton metabolism in Narragansett Bay calculated from survey field measurement and micrososm observations. Estuaries 4(3):167–175

    Article  CAS  Google Scholar 

  • Oviatt C, Keller A, Reed L (2002) Annual primary production in Narragansett Bay with no bay-wide winter-spring phytoplankton bloom. Est Coast Shelf Sci 54:1013–1026

    Article  CAS  Google Scholar 

  • Pace ML (2001) Prediction and the aquatic sciences. Can J Fish Aq Sci 58(1):63–72

    Article  Google Scholar 

  • Pennock JR, Sharp JH (1986) Phytoplankton production in the Delaware Estuary: temporal and spatial variability. Mar Ecol Progr Ser 34:143–155

    Article  Google Scholar 

  • Pilson MEQ (1985) Annual cycles of nutrients and chlorophyll in Narragansett Bay, Rhode Island. J Mar Res 43:849–873

    Article  CAS  Google Scholar 

  • Raick C, Soetaert K, Gregoire M (2006) Model complexity and performance: how far can we simplify? Progr Oceanogr 70(1):27–57

    Article  Google Scholar 

  • Reckhow KH (1994) Water quality simulation modeling and uncertainty analysis for risk assessment and decision making. Ecol Model 72(1–2):1–20

    Article  Google Scholar 

  • Riebesell U (1989) Comparison of sinking and sedimentation rate measurements in a diatom winter/spring bloom. Mar Ecol Prog Ser 54:109–119

    Article  Google Scholar 

  • Rigler FH, Peters RH (1995) Science and limnology. Book 6 In: Kinne O (ed) Excellence in ecology. International Ecology Institute, Oldendorf/Luhe, 239 pp

    Google Scholar 

  • Rogers JM (2008) Circulation and transport in upper Narragansett Bay. M.S. thesis, University of Rhode Island, Kingston, RI, 95 pp

    Google Scholar 

  • Rudnick D, Oviatt C (1986) Seasonal lags between organic carbon deposition and mineralization in marine sediments. J Mar Res 44(4):815–837

    Google Scholar 

  • Sampou P, Kemp WM (1994) Factors regulating plankton community respiration in Chesapeake Bay. Mar Ecol Prog Ser 110:249–258

    Article  Google Scholar 

  • Scavia D, Justic D, Bierman VJ Jr (2004) Reducing hypoxia in the Gulf of Mexico: advice from three models. Estuaries 27(3):419–425

    Article  CAS  Google Scholar 

  • Scavia D, Kelly ELA, Hagy JD (2006) A simple model for forecasting the effects of nitrogen loads on Chesapeake Bay hypoxia. Est Coasts 29:674–684

    Article  CAS  Google Scholar 

  • Scavia D, Evans MA, Obenour DR (2013) A scenario and forecast model for Gulf of Mexico Hypoxia area and volume. Environ Sci Tech 47:10423–10428

    Article  CAS  Google Scholar 

  • Smith EM, Kemp WM (1995) Seasonal and regional variations in plankton community production and respiration for Chesapeake Bay. Mar Ecol Prog Ser 116(1–3):217–231

    Article  Google Scholar 

  • Stickney AP, Stringer LD (1957) A study of the invertebrate bottom fauna of Greenwich Bay, Rhode Island. Ecology 38(1):111–122

    Article  Google Scholar 

  • Stow CA, Roessler C, Borsuk ME, Bowen JD, Reckhow KH (2003) Comparison of estuarine water quality models for total maximum daily load development in Neuse River Estuary. J Water Resour Plann Manage 129(4):307–314

    Article  Google Scholar 

  • Swaney DP, Scavia D, Howarth RW, Marino RM (2008) Estuarine classification and response to nitrogen loading: insights from simple ecological models. Est. Coast. Shelf Sci. 77:253–263

    Article  Google Scholar 

  • Swanson JC, Jayko K (1988) A simplified estuarine box model of Narragansett Bay. Final report to the Narragansett Bay Project and U.S. Environmental Protection Agency, Applied Science Associates, Narragansett, RI 80 pp

    Google Scholar 

  • Testa JM, Kemp WM (2008) Regional, seasonal, and inter-annual variability of biogeochemical processes and physical transport in a partially stratified estuary: a box-modeling analysis. Mar Ecol Prog Ser 356:63–79

    Article  CAS  Google Scholar 

  • Turner RE (1978) Community plankton respiration in a salt marsh estuary and the importance of macrophytic leachates. Limnol Oceanogr 23(3):442–451

    Article  Google Scholar 

  • Valiela I, Foreman K, LaMontagne M, Hersh D, Costa J, Peckol P, DeMeo-Andreson B, D’Avanzo C, Babione M, Sham C-H, Brawley J, Lajtha K (1992) Couplings of watersheds and coastal waters: sources and consequences of nutrient enrichment in Waquoit Bay, Massachusetts. Estuaries 15(4):443–457

    Article  CAS  Google Scholar 

  • Van Nes EH, Scheffer M (2005) A strategy to improve the contribution of complex simulation models to ecological theory. Ecol Model 185:153–164

    Article  Google Scholar 

  • Vargo GA (1979) The contribution of ammonia excreted by zooplankton to phytoplankton production in Narragansett Bay. J Plankton Res 1(1):75–84

    Article  CAS  Google Scholar 

  • Vollenweider RA (1974) A manual on methods for measuring primary production in aquatic environments. Blackwell Scientific Publications, Oxford 225 pp

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank J.N. Kremer and J.W. Brawley, with whom this approach and formulations were developed while working on parallel models for Greenwich Bay and Waquoit Bay, MA. The work further benefited from frequent discussions with C.A. Oviatt, A.A. Keller, S.L. Granger, A.J. Gold, D.E. Campbell, P.V. August, L. Erikson, and M.L. Spaulding. S.L. Granger, M. Traber, M. Richardson, and B. Buckley were responsible for much of the data collection in Greenwich Bay. Funding for this research was provided by the Rhode Island Sea Grant College Program (NOAA), Narragansett Electric, and the NOAA Center for Sponsored Coastal Ocean Research (Coastal Hypoxia Research Program, grant no. NA05NOS4781201). This is VIMS’ contribution no. 3620 and NOAA Coastal Hypoxia Research Program contribution no. 213.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Brush .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Brush, M.J., Nixon, S.W. (2017). A Reduced Complexity, Hybrid Empirical-Mechanistic Model of Eutrophication and Hypoxia in Shallow Marine Ecosystems. In: Justic, D., Rose, K., Hetland, R., Fennel, K. (eds) Modeling Coastal Hypoxia. Springer, Cham. https://doi.org/10.1007/978-3-319-54571-4_4

Download citation

Publish with us

Policies and ethics