Skip to main content

Environmental Virology

  • Chapter
  • First Online:

Abstract

Enteric viruses excreted in high concentrations in the feces of infected individuals are the main target of investigations in environmental virology. The discharge of those agents in different environmental matrices represents a risk of infection for the population through several routes of infection, particularly in countries where sanitation is deficient. Studies in environmental virology were initiated in the beginning of the year 1940 and still present many challenges, related not only to methodologies and establishment of parameters but also to the use of such studies as a tool for public policies. This chapter is a short review of the progress made in the area featuring the contributions of work conducted in Latin America to solidify the progress of knowledge in the region.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abad FX, Villena C, Guix S et al (2001) Potential role of fomites in the vehicular transmission of human astroviruses. Appl Environ Microbiol 67:3904–3907. doi:10.1128/AEM.67.9.3904-3907.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Albinana-Gimenez N, Clemente-Casares P, Bofill-Mas S et al (2006) Distribution of human polyomaviruses, adenoviruses, and hepatitis E virus in the environment and in a drinking-water treatment plant. Environ Sci Technol 40(23):7416–7422

    Article  CAS  PubMed  Google Scholar 

  3. Appleton H, Higgins PG (1975) Letter: Viruses and gastroenteritis in infants. Lancet 1(7919):1297

    Article  CAS  PubMed  Google Scholar 

  4. Arraj A, Bohatier J, Laveran H et al (2005) Comparison of bacteriophage and enteric virus removal in pilot scale activated sludge plants. J Appl Microbiol 98:516–524. doi:10.1111/j.1365-2672.2004.02485.x

    Article  CAS  PubMed  Google Scholar 

  5. Assis AS, Cruz LT, Ferreira AS et al (2015) Relationship between viral detection and turbidity in a watershed contaminated with group A rotavirus. Environ Sci Pollut Res Int 22(9):6886–6897. doi:10.1007/s11356-014-3874-8

    Article  CAS  PubMed  Google Scholar 

  6. Aw TG, Howe A, Rose JB (2014) Metagenomic approaches for direct and cell culture evaluation of the virological quality of wastewater. J Virol Methods 210:15–21. doi:10.1016/j.jviromet.2014.09.017

    Article  CAS  PubMed  Google Scholar 

  7. Baert L, Uyttendaele M, Debevere J (2008a) Evaluation of viral extraction methods on a broad range of ready-to-eat foods with conventional and real-time RT-PCR for norovirus GII detection. Int J Food Microbiol 123:101–108. doi:10.1016/j.ijfoodmicro.2007.12.020

    Article  CAS  PubMed  Google Scholar 

  8. Baert L, Wobus CE, Coillie EV et al (2008b) Detection of murine norovirus 1 by using plaque assay, transfection assay, and real-time reverse transcription-PCR before and after heat exposure. Appl Environ Microbiol 74(2):543–546. doi:10.1128/AEM.01039-07

    Article  CAS  PubMed  Google Scholar 

  9. Barrella KM, Garrafa P, Monezi TA et al (2009) Longitudinal study on occurrence of adenoviruses and hepatitis A virus in raw domestic sewage in the city of Limeira, São Paulo. Braz J Microbiol 40(1):102–107. doi:10.1590/S1517-838220090001000017

    Article  PubMed  PubMed Central  Google Scholar 

  10. Barril PA, Fumian TM, Prez VE et al (2015) Rotavirus seasonality in urban sewage from Argentina: effect of meteorological variables on the viral load and the genetic diversity. Environ Res 138:409–415. doi:10.1016/j.envres.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  11. Barril PA, Giordano MO, Isa MB et al (2010) Correlation between rotavirus A genotypes detected in hospitalized children and sewage samples in 2006, Córdoba, Argentina. J Med Virol 82(7):1277–1281. doi:10.1002/jmv.21800

    Article  CAS  PubMed  Google Scholar 

  12. Bartz FE, Hodge DW, Heredia N et al (2016) Somatic coliphage profiles of produce and environmental samples from farms in Northern México. Food Environ Virol 8(3):221–226. doi:10.1007/s12560-016-9240-x

    Article  PubMed  Google Scholar 

  13. Belguith K, Hassen A, Aouni M (2006) Comparative study of four extraction methods for enterovirus recovery from wastewater and sewage sludge. Bioresour Technol 97(3):414–419. doi:10.1016/j.biortech.2005.03.022

    Article  CAS  PubMed  Google Scholar 

  14. Bergamaschi B, Rodrigues MT, Silva JV et al (2015) Moving beyond classical markers of water quality: detection of enteric viruses and genotoxicity in water of the Sinos River. Braz J Biol 75(2 suppl):63–67. doi:10.1590/1519-6984.1713

    Article  CAS  PubMed  Google Scholar 

  15. Bert F, Scaioli G, Gualano MR et al (2014) Norovirus outbreaks on commercial cruise ships: a systematic review and new targets for the public health agenda. Food Environ Virol 6(2):67–74. doi:10.1007/s12560-014-9145-5

    Article  PubMed  Google Scholar 

  16. Berto A, van der Poel WH, Hakze-van der Honing R et al (2013) Replication of hepatitis E virus in three-dimensional cell culture. J Virol Methods 187(2):327–332. doi:10.1016/j.jviromet.2012.10.017

    Article  CAS  PubMed  Google Scholar 

  17. Betancourt WQ, Querales L, Sulbaran YF et al (2010) Molecular characterization of sewage-borne pathogens and detection of sewage markers in an urban stream in Caracas, Venezuela. Appl Environ Microbiol 76(6):2023–2026. doi:10.1128/AEM.02752-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bishop RF, Davidson GP, Holmes IH et al (1973) Virus particles in epithelial cells of duodenal mucosa from children with acute non-bacterial gastroenteritis. Lancet 2(7841):1281–1283. doi:10.1016/S0140-6736(73)92867-5

    Article  CAS  PubMed  Google Scholar 

  19. Blanco Fernández MD, Torres C, Martínez LC et al (2011) Genetic and evolutionary characterization of norovirus from sewage and surface waters in Córdoba City, Argentina. Infect Genet Evol 11(7):1631–1637. doi:10.1016/j.meegid.2011.06.005

    Article  PubMed  Google Scholar 

  20. Blanco Fernández MD, Torres C, Riviello-López G et al (2012) Analysis of the circulation of hepatitis A virus in Argentina since vaccine introduction. Clin Microbiol Infect 18(12):E548–E551. doi:10.1111/1469-0691.12034

    Article  PubMed  Google Scholar 

  21. Bofill-Mas S, Albinana-Gimenez N, Clemente-Casares P et al (2006) Quantification and stability of human adenoviruses and polyomavirus JCPyV in wastewater matrices. Appl Environ Microbiol 72(12):7894–7896. doi:10.1128/AEM.00965-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bofill-Mas S, Rusiñol M, Fernandez-Cassi X et al (2013) Quantification of human and animal viruses to differentiate the origin of the fecal contamination present in environmental samples. Biomed Res Int 2013:192089. doi:10.1155/2013/192089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Borchardt MA, Haas NL, Hunt RJ (2004) Vulnerability of drinking-water wells in La Crosse, Wisconsin, to enteric-virus contamination from surface water contributions. Appl Environ Microbiol 70(10):5937–5946. doi:10.1128/AEM.70.10.5937-5946.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bosch A (1998) Human enteric viruses in the water environment: a minireview. Int Microbiol 1(3):191–196

    CAS  PubMed  Google Scholar 

  25. Bosch A, Guix S, Sano D et al (2008) New tools for the study and direct surveillance of viral pathogens in water. Curr Opin Biotechnol 19(3):295–301. doi:10.1016/j.copbio.2008.04.006

    Article  CAS  PubMed  Google Scholar 

  26. Boxman ILA, Tilburg JJHC, Loeke NAJM et al (2007) An efficient and rapid method for recovery of norovirus from food associated with outbreaks of gastroenteritis. J Food Prot 70(2):504–508

    Article  CAS  PubMed  Google Scholar 

  27. Brandão ML, Almeida DO, Bispo FC et al (2014a) Assessment of microbiological contamination of fresh, minimally processed, and ready-to-eat lettuces (Lactuca sativa), Rio de Janeiro State, Brazil. J Food Sci 79(5):M961–M966. doi:10.1111/1750-3841.12459

    Article  PubMed  CAS  Google Scholar 

  28. Brandão MLL, Almeida DO, Marin VA et al (2014b) Recovery of Norovirus from lettuce (Lactuca sativa) using an adsorption-elution method with a negatively charged membrane: comparison of two elution buffers. Vigilância Sanitária em Debate: Sociedade, Ciência & Tecnologia 2:58–63

    Google Scholar 

  29. Brassard J, Gagné MJ, Généreux M et al (2012) Detection of human food-borne and zoonotic viruses on irrigated, field-grown strawberries. Appl Environ Microbiol 78(10):3763–3766. doi:10.1128/AEM.00251-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bucardo F, Lindgren PE, Svensson L et al (2011) Low prevalence of rotavirus and high prevalence of norovirus in hospital and community wastewater after introduction of rotavirus vaccine in Nicaragua. PLoS One 6(10):e25962. doi:10.1371/journal.pone.0025962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Burbano-Rosero EM, Ueda-Ito M, Kisielius JJ et al (2011) Diversity of somatic coliphages in coastal regions with different levels of anthropogenic activity in São Paulo, Brazil. Appl Environ Microbiol 77(12):4208–4216. doi:10.1128/AEM.02780-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Burutarán L, Lizasoain A, García M et al (2016) Detection and molecular characterization of Aichivirus 1 in wastewater samples from Uruguay. Food Environ Virol 8(1):13–17. doi:10.1007/s12560-015-9217-1

    Article  PubMed  CAS  Google Scholar 

  33. Caillou S, Castagnaro N, Naval M (1998) Sewage sludges: application of a technique for recovering enterovirus. Rev Argent Microbiol 30(2):96–99

    CAS  PubMed  Google Scholar 

  34. Calgua B, Fumian T, Rusiñol M et al (2013) Detection and quantification of classic and emerging viruses by skimmed-milk flocculation and PCR in river water from two geographical areas. Water Res 47(8):2797–2810. doi:10.1016/j.watres.2013.02.043

    Article  CAS  PubMed  Google Scholar 

  35. Calgua B, Mengewein A, Grunert A et al (2008) Development and application of a one-step low cost procedure to concentrate viruses from seawater samples. J Virol Methods 153(2):79–83. doi:10.1016/j.jviromet.2008.08.003

    Article  CAS  PubMed  Google Scholar 

  36. Cantalupo PG, Calgua B, Zhao G et al (2011) Raw sewage harbors diverse viral populations. MBio 2(5):e00180–e00111. doi:10.1128/mBio.00180-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Carducci A, Casini B, Bani A et al (2003) Virological control of groundwater quality using biomolecular tests. Water Sci Technol 47(3):261–266

    CAS  PubMed  Google Scholar 

  38. Carducci A, Morici P, Pizzi F et al (2008) Study of the viral removal efficiency in a urban wastewater treatment plant. Water Sci Technol 58(4):893–897. doi:10.2166/wst.2008.437

    Article  CAS  PubMed  Google Scholar 

  39. Carducci A, Verani M, Lombardi R et al (2011) Environmental survey to assess viral contamination of air and surfaces in hospital settings. J Hosp Infect 77(3):242–247. doi:10.1016/j.jhin.2010.10.010

    Article  CAS  PubMed  Google Scholar 

  40. Carratalà A, Rusinol M, Hundesa A et al (2012) A novel tool for specific detection and quantification of chicken/turkey parvoviruses to trace poultry fecal contamination in the environment. Appl Environ Microbiol 78(20):7496–7499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Chapron CD, Ballester NA, Fontaine JH et al (2000) Detection of astroviruses, enteroviruses, and adenovirus types 40 and 41 in surface waters collected and evaluated by the information collection rule and an integrated cell culture-nested PCR procedure. Appl Environ Microbiol 66(6):2520–2525. doi:10.1128/AEM.66.6.2520-2525.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chiba S, Sakuma Y, Kogasaka R et al (1979) An outbreak of gastroenteritis associated with calicivirus in an infant 307 home. J Med Virol 4(4):249–254

    Article  CAS  PubMed  Google Scholar 

  43. Corrêa Ade A, Rigotto C, Moresco V et al. (2012) The depuration dynamics of oysters (Crassostrea gigas) artificially contaminated with hepatitis A virus and human adenovirus. Mem Inst Oswaldo Cruz 107(1):11–17. doi:http://dx.doi.org/10.1590/S0074-02762012000100002

  44. Coudray-Meunier C, Fraisse A, Martin-Latil S et al (2016) A novel high-throughput method for molecular detection of human pathogenic viruses using a nanofluidic real-time PCR system. PLoS One 11(1):e0147832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. da Silva Assis MR, Vieira CB, Fioretti JM et al (2016) Detection and molecular characterization of gemycircularvirus from environmental samples in Brazil. Food Environ Virol 8(4):305–309. doi:10.1007/s12560-016-9254-4

    Article  PubMed  CAS  Google Scholar 

  46. Dalla Vecchia A, Rigotto C, Staggemeier R et al (2015) Surface water quality in the Sinos River basin, in Southern Brazil: tracking microbiological contamination and correlation with physicochemical parameters. Environ Sci Pollut Res Int 22(13):9899–9911. doi:10.1007/s11356-015-4175-6

    Article  CAS  PubMed  Google Scholar 

  47. de Abreu CA, Miagostovich MP (2012) Optimization of an adsorption–elution method with a negatively charged membrane to recover norovirus from lettuce. Food Environ Virol 5:144–149. doi:10.1007/s12560-013-9113-5

    Google Scholar 

  48. de Abreu CA, Souza DSM, Moresco V et al (2012) Stability of human enteric viruses in seawater samples from mollusc depuration tanks coupled with ultraviolet irradiation. J Appl Microbiol 113(6):1554–1563. doi:10.1111/jam.12010

    Article  Google Scholar 

  49. de Oliveira Pereira JS, da Silva LR, de Meireles NA et al (2016) Environmental surveillance of polioviruses in Rio de Janeiro, Brazil, in support to the activities of global polio eradication initiative. Food Environ Virol 8(1):27–33. doi:10.1007/s12560-015-9221-5

    Article  PubMed  Google Scholar 

  50. de Paula VS, Diniz-Mendes L, Villar LM et al (2007) Hepatitis A virus in environmental water samples from the Amazon Basin. Water Res 41(6):1169–1176. doi:10.1016/j.watres.2006.11.029

    Article  PubMed  CAS  Google Scholar 

  51. Deetz T, Smith E, Goyal M et al (1984) Occurrence of rota- and enteroviruses in drinking and environmental water in a developing nation. Water Res 18(5):567–571. doi:10.1016/0043-1354(84)90205-7

    Article  Google Scholar 

  52. Diniz-Mendes L, Paula VS, Luz SL et al (2008) High prevalence of human Torque teno virus in streams crossing the city of Manaus, Brazilian Amazon. J Appl Microbiol 105(1):51–58. doi:10.1111/j.1365-2672.2007.03720.x

    Article  CAS  PubMed  Google Scholar 

  53. dos Santos DR, de Paula VS, de Oliveira JM et al (2011) Hepatitis E virus in swine and effluent samples from slaughterhouses in Brazil. Vet Microbiol 149(1-2):236–241. doi:10.1016/j.vetmic.2010.10.024

    Article  PubMed  Google Scholar 

  54. Elizaquível P, Aznar R, Sánchez G (2014) Recent developments in the use of viability dyes and quantitative PCR in the food microbiology field. J Appl Microbiol 116(1):1–13. doi:10.1111/jam.12365

    Article  PubMed  CAS  Google Scholar 

  55. Elmahdy EM, Fongaro G, Schissi CD et al (2016) Enteric viruses in surface water and sediment samples from the catchment area of Peri Lagoon, Santa Catarina State, Brazil. J Water Health 14(1):142–154. doi:10.2166/wh.2015.295

    Article  CAS  PubMed  Google Scholar 

  56. Enriquez R, Frösner GG, Hochstein-Mintzel V et al (1992) Accumulation and persistence of hepatitis A virus in mussels. J Med Virol 37(3):174–179

    Article  CAS  PubMed  Google Scholar 

  57. Espinosa AC, Arias CF, Sánchez-Colón S et al (2009) Comparative study of enteric viruses, coliphages and indicator bacteria for evaluating water quality in a tropical high-altitude system. Environ Health 8:49. doi:10.1186/1476-069X-8-49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Esteves-Jaramillo A, Estívariz CF, Peñaranda S et al (2014) Detection of vaccine-derived polioviruses in Mexico using environmental surveillance. J Infect Dis 210(suppl 1):S315–S323. doi:10.1093/infdis/jiu183

    Article  PubMed  Google Scholar 

  59. Félix JL, Fernandez YC, Velarde-Félix JS et al (2010) Detection and phylogenetic analysis of hepatitis A virus and norovirus in marine recreational waters of Mexico. J Water Health 8(2):269–278. doi:10.2166/wh.2009.114

    Article  PubMed  CAS  Google Scholar 

  60. Fernández MD, Torres C, Poma HR et al (2012) Environmental surveillance of norovirus in Argentina revealed distinct viral diversity patterns, seasonality and spatio-temporal diffusion processes. Sci Total Environ 437:262–269. doi:10.1016/j.scitotenv.2012.08.033

    Article  PubMed  CAS  Google Scholar 

  61. Ferreira FF, Guimarães FR, Fumian TM et al (2009) Environmental dissemination of group A rotavirus: P-type, G-type and subgroup characterization. Water Sci Technol 60(3):633–642. doi:10.2166/wst.2009.413

    Article  CAS  PubMed  Google Scholar 

  62. Ferreyra LJ, Giordano MO, Martínez LC et al (2015) Tracking novel adenovirus in environmental and human clinical samples : no evidence of endemic human adenovirus type 58 circulation in Córdoba city, Argentina. Epidemiol Infect 143(7):1427–1431. doi:10.1017/S0950268814002192

    Article  CAS  PubMed  Google Scholar 

  63. Fioretti JM, Rocha MS, Fumian TM et al (2016) Occurrence of human sapoviruses in wastewater and stool samples in Rio de Janeiro, Brazil. J Appl Microbiol 121(3):855–862. doi:10.1111/jam.13205

    Article  CAS  PubMed  Google Scholar 

  64. Fong TT, Lipp EK (2005) Enteric viruses of humans and animals in aquatic environments: health risks, detection, and potential water quality assessment tools. Microbiol Mol Biol Rev 69(2):357–371. doi:10.1128/MMBR.69.2.357-371.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fong TT, Phanikumar MS, Xagorarak I et al (2010) Quantitative detection of human adenoviruses in wastewater and combined sewer overflows influencing a Michigan river. Appl Environ Microbiol 76(3):715–723. doi:10.1128/AEM.01316-09

    Article  CAS  PubMed  Google Scholar 

  66. Fongaro G, Hernández M, García-González MC et al (2016) Propidium monoazide coupled with PCR predicts infectivity of enteric viruses in swine manure and biofertilized soil. Food Environ Virol 8(1):79–85. doi:10.1007/s12560-015-9225-1

    Article  CAS  PubMed  Google Scholar 

  67. Fongaro G, Nascimento MA, Rigotto C et al (2013) Evaluation and molecular characterization of human adenovirus in drinking water supplies: viral integrity and viability assays. Virol J 10:166. doi:10.1186/1743-422X-10-166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fongaro G, Nascimento MA, Viancelli A et al (2012) Surveillance of human viral contamination and physicochemical profiles in a surface water lagoon. Water Sci Technol 66(12):2682–2687. doi:10.2166/wst.2012.504

    Article  CAS  PubMed  Google Scholar 

  69. Fongaro G, Padilha J, Schissi CD et al (2015) Human and animal enteric virus in groundwater from deep wells, and recreational and network water. Environ Sci Pollut Res Int 22(24):20060–20066. doi:10.1007/s11356-015-5196-x

    Article  CAS  PubMed  Google Scholar 

  70. Formiga-Cruz M, Hundesa A, Clemente-Casares P et al (2005) Nested multiplex PCR assay for detection of human enteric viruses in shellfish and sewage. J Virol Methods 125(2):111–118. doi:10.1016/j.jviromet.2005.01.009

    Article  CAS  PubMed  Google Scholar 

  71. Formiga-Cruz M, Tofiño-Quesada G, Bofill-Mas S et al (2002) Distribution of human virus contamination in shellfish from different growing areas in Greece, Spain, Sweden, and the United Kingdom. Appl Environ Microbiol 68(12):5990–5998. doi:10.1128/AEM.68.12.5990-5998.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fumian TM, Guimarães FR, Pereira Vaz BJ et al (2010a) Molecular detection, quantification and characterization of human polyomavirus JC from waste water in Rio De Janeiro, Brazil. J Water Health 8(3):438–445. doi:10.2166/wh.2010.090

    Article  CAS  PubMed  Google Scholar 

  73. Fumian TM, Leite JP, Castello AA et al (2010b) Detection of rotavirus A in sewage samples using multiplex qPCR and an evaluation of the ultracentrifugation and adsorption-elution methods for virus concentration. J Virol Methods 170(1-2):42–46. doi:10.1016/j.jviromet.2010.08.017

    Article  CAS  PubMed  Google Scholar 

  74. Fumian TM, Leite JP, Marin VA et al (2009) A rapid procedure for detecting noroviruses from cheese and fresh lettuce. J Virol Methods 155(1):39–43. doi:10.1016/j.jviromet.2008.09.026

    Article  CAS  PubMed  Google Scholar 

  75. Fumian TM, Leite JP, Rose TL et al (2011) One year environmental surveillance of rotavirus species A (RVA) genotypes in circulation after the introduction of the Rotarix® vaccine in Rio de Janeiro, Brazil. Water Res 45(17):5755–5763. doi:10.1016/j.watres.2011.08.039

    Article  CAS  PubMed  Google Scholar 

  76. Fumian TM, Vieira CB, Leite JP et al (2013) Assessment of burden of virus agents in an urban sewage treatment plant in Rio de Janeiro, Brazil. J Water Health 11(1):110–119. doi:10.2166/wh.2012.123

    Article  CAS  PubMed  Google Scholar 

  77. Fuster N, Pintó RM, Fuentes C et al (2016) Propidium monoazide RTqPCR assays for the assessment of hepatitis A inactivation and for a better estimation of the health risk of contaminated waters. Water Res 101:226–232. doi:10.1016/j.watres.2016.05.086

    Article  CAS  PubMed  Google Scholar 

  78. Gallimore CI, Barreiros MA, Brown DW et al (2004) Noroviruses associated with acute gastroenteritis in a children’s day care facility in Rio de Janeiro, Brazil. Braz J Med Biol Res 37(3):321–326. doi:http://dx.doi.org/10.1590/S0100-879X2004000300005

  79. Gallimore CI, Taylor C, Gennery AR et al (2006) Environmental monitoring for gastroenteric viruses in a pediatric primary immunodeficiency unit. J Clin Microbiol 44(2):395–399. doi:10.1128/JCM.44.2.395-399.2006

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gallimore CI, Taylor C, Gennery AR et al (2005) Use of a heminested reverse transcriptase PCR assay for detection of astrovirus in environmental swabs from an outbreak of gastroenteritis in a pediatric primary immunodeficiency unit. J Clin Microbiol 43(8):3890–3894. doi:10.1128/JCM.43.8.3890-3894.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ganime AC, Carvalho-Costa FA, Mendonça MC et al (2012) Group A rotavirus detection on environmental surfaces in a hospital intensive care unit. Am J Infect Control 40(6):544–547. doi:10.1016/j.ajic.2011.07.017

    Article  PubMed  Google Scholar 

  82. Ganime AC, Carvalho-Costa FA, Santos M et al (2014) Viability of human adenovirus from hospital fomites. J Med Virol 86(12):2065–2069. doi:10.1002/jmv.23907

    Article  CAS  PubMed  Google Scholar 

  83. Ganime AC, Leite JP, de Abreu CA et al (2015) Evaluation of the swab sampling method to recover viruses from fomites. J Virol Methods 217:24–27. doi:10.1016/j.jviromet.2015.02.009

    Article  CAS  PubMed  Google Scholar 

  84. Ganime AC, Leite JP, Figueiredo CE et al (2016) Dissemination of human adenoviruses and rotavirus species A on fomites of hospital pediatric units. Am J Infect Control pii:S0196-6553(16)30226-7. doi:10.1016/j.ajic.2016.04.207

  85. Gantzer C, Maul A, Audic JM et al (1998) Detection of infectious enteroviruses, enterovirus genomes, somatic coliphages, and Bacteroides fragilis phages in treated wastewater. Appl Environ Microbiol 64(11):4307–4312

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Garcia LA, Nascimento MA, Barardi CR (2015) Effect of UV light on the inactivation of recombinant human adenovirus and murine norovirus seeded in seawater in shellfish depuration tanks. Food Environ Virol 7(1):67–75. doi:10.1007/s12560-014-9177-x

    Article  CAS  PubMed  Google Scholar 

  87. Garcia LA, Viancelli A, Rigotto C et al (2012) Surveillance of human and swine adenovirus, human norovirus and swine circovirus in water samples in Santa Catarina, Brazil. J Water Health 10(3):445–452. doi:10.2166/wh.2012.190

    Article  CAS  PubMed  Google Scholar 

  88. Gerba CP (2006) Food virology: past, present, and future. In: Goyal SM (ed) Viruses in food, 1st edn. Springer, New York, pp 1–4

    Google Scholar 

  89. Gerba CP (2007) Virus occurrence and survival in the environmental waters. In: Bosch A (ed) Human viruses in water, 1st edn. Elsevier, Amsterdam, pp 91–108

    Google Scholar 

  90. Gerba CP, Goyal SM, Labelle RL et al (1979) Failure of indicator bacteria to reflect the occurrence of enteroviruses in marine waters. Am J Public Health 69(11):1116–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gerba CP, Gramos DM, Nwachuku N (2002) Comparative inactivation of enteroviruses and adenovirus 2 by UV light. Appl Environ Microbiol 68(10):5167–5169. doi:10.1128/AEM.68.10.5167-5169.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gerba CP, Smith EM, Melnick JL (1977) Development of a quantitative method for detecting enteroviruses in estuarine sediments. Appl Environ Microbiol 34(2):158–163

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Girones R, Ferrús MA, Alonso JL et al (2010) Molecular detection of pathogens in water: the pros and cons of molecular techniques. Water Res 44(15):4325–4339. doi:10.1016/j.watres.2010.06.030

    Article  CAS  PubMed  Google Scholar 

  94. Gofti-Laroche L, Gratacap-Cavallier B, Genoulaz O et al (2001) A new analytical tool to assess health associated with the virological quality of drinking water (EMIRA study). Water Sci Technol 43(12):39–48

    CAS  PubMed  Google Scholar 

  95. Gortáres-Moroyoqui C-EL, Naranjo JE et al (2011) Microbiological water quality in a large irrigation system: El Vale del Yaqui, Sonora México. J Environ Sci Health A Tox Hazard Subst Environ Eng 46(14):1708–1712. doi:10.1080/10934529.2011.623968

    Article  PubMed  CAS  Google Scholar 

  96. Gregio CRV (2006) Caracterização de poliovirus derivado da vacina isolados a partir de amostras ambientais. Dissertation, Oswaldo Cruz Foundation

    Google Scholar 

  97. Griffin DW, Donaldson KA, Paul JH et al (2003) Pathogenic human viruses in coastal waters. Clin Microbiol Rev 16:129–143. doi:10.1128/CMR.16.1.129-143.2003

    Article  PubMed  PubMed Central  Google Scholar 

  98. Guimarães FR, Ferreira FF, Vieira CB et al (2008) Molecular detection of human astrovirus in an urban sewage treatment plant in Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz 103(8):819–823. doi:http://dx.doi.org/10.1590/S0074-02762008000800013

  99. Gutiérrez MF, Alvarado MV, Martínez E et al (2007) Presence of viral proteins in drinkable water: sufficient condition to consider water a vector of viral transmission? Water Res 41(2):373–378. doi:10.1016/j.watres.2006.09.022

    Article  PubMed  CAS  Google Scholar 

  100. Guzmán C, Jofre J, Blanch AR et al (2007a) Development of a feasible method to extract somatic coliphages from sludge, soil, and treated biowaste. J Virol Methods 144(1-2):41–48

    Article  PubMed  CAS  Google Scholar 

  101. Guzmán C, Jofre J, Montemayor M et al (2007b) Occurrence and levels of indicators and selected pathogens in different sludges and biosolids. J Appl Microbiol 103(6):2420–2429. doi:10.1111/j.1365-2672.2007.03487.x

    Article  PubMed  Google Scholar 

  102. Haas CN, Rose JB, Gerba CP (1999) Quantitative microbial risk assessment. Wiley, New York

    Google Scholar 

  103. Hachich EM, Galvani AT, Padula JA et al (2013) Pathogenic parasites and enteroviruses in wastewater: support for a regulation on water reuse. Water Sci Technol 67(7):1512–1518. doi:10.2166/wst.2013.019

    Article  PubMed  Google Scholar 

  104. Harwood VJ, Levine AD, Scott TM et al (2005) Validity of the indicator organism paradigm for pathogen reduction in reclaimed water and public health protection. Appl Environ Microbiol 71(6):3163–3170. doi:10.1128/AEM.71.6.3163-3170.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Havelaar AH, Kirk MD, Torgerson PR et al (2015) World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med 12(12):e1001923. doi:10.1371/journal.pmed.1001923

    Article  PubMed  PubMed Central  Google Scholar 

  106. He X, Wei Y, Cheng L et al (2012) Molecular detection of three gastroenteritis viruses in urban surface waters in Beijing and correlation with levels of fecal indicator bacteria. Environ Monit Assess 184(9):5563–5570. doi:10.1007/s10661-011-2362-6

    Article  CAS  PubMed  Google Scholar 

  107. Heldt FH, Staggmeier R, Gularte JS et al (2016) Hepatitis E virus in surface water, sediments, and pork products marketed in Southern Brazil. Food Environ Virol 8(3):200–205. doi:10.1007/s12560-016-9243-7

    Article  CAS  PubMed  Google Scholar 

  108. Hernandez-Morga J, Leon-Felix J, Peraza-Garay F et al (2009) Detection and characterization of hepatitis A virus and Norovirus in estuarine water samples using ultrafiltration: RT-PCR integrated methods. J Appl Microbiol 106(5):1579–1590. doi:10.1111/j.1365-2672.2008.04125.x

    Article  CAS  PubMed  Google Scholar 

  109. Hewitt J, Greening GE, Leonard M et al (2013) Evaluation of human adenovirus and human polyomavirus as indicators of human sewage contamination in the aquatic environment. Water Res 47(17):6750–6761. doi:10.1016/j.watres.2013.09.001

    Article  CAS  PubMed  Google Scholar 

  110. Hipsey MR, Brookes JD (2013) Pathogen management in surface waters: practical considerations for reducing public health risk. In: Rodriguez-Morales AJ (ed) Current topics in public health. InTech, Rijeka, Croatia, pp 445–475

    Google Scholar 

  111. Holtz LR, Finkbeiner SR, Zhao G et al (2009) Klassevirus 1, a previously undescribed member of the family Picornaviridae, is globally widespread. Virol J 6:86. doi:10.1186/1743-422X-6-86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Homma A, Schatzmayr HG, Frias AM et al (1975) Viral pollution evaluation of the Guanabara Bay. Rev Inst Med Trop Sao Paulo 17(3):140–145

    CAS  PubMed  Google Scholar 

  113. Hoorfar J, Cook N, Malorny B et al (2004) Diagnostic PCR: making internal amplification control mandatory. J Appl Microbiol 96(2):221–222

    Article  CAS  PubMed  Google Scholar 

  114. Hundesa A, Bofill-Mas S, Maluquer de Motes C et al (2010) Development of a quantitative PCR assay for the quantitation of bovine polyomavirus as a microbial source-tracking tool. J Virol Methods 163(2):385–389. doi:10.1016/j.jviromet.2009.10.029

    Article  CAS  PubMed  Google Scholar 

  115. Hundesa A, Maluquer de Motes C, Albinana-Gimenez N et al (2009) Development of a qPCR assay for the quantification of porcine adenoviruses as an MST tool for swine fecal contamination in the environment. J Virol Methods 158(1-2):130–135. doi:10.1016/j.jviromet.2009.02.006

    Article  CAS  PubMed  Google Scholar 

  116. Hundesa A, Maluquer de Motes C, Bofill-Mas S et al (2006) Identification of human and animal adenoviruses and polyomaviruses for determination of sources of fecal contamination in the environment. Appl Environ Microbiol 72(12):7886–7893. doi:10.1128/AEM.01090-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ijzerman MM, Dahililng DR, Fout GS (1997) A method to remove environmental inhibitors prior to the detection of waterborne enteric viruses by reverse transcription-polymerase chain reaction. J Virol Methods 63(1-2):145–153

    Article  CAS  PubMed  Google Scholar 

  118. Ikner LA, Gerba CP, Bright KR (2012) Concentration and recovery of viruses from water: a comprehensive review. Food Environ Virol 4(2):41–67. doi:10.1007/s12560-012-9080-2

    Article  PubMed  Google Scholar 

  119. ISFEV – International Society for Food and Environmental Virology (2016) International Society for Food and Environmental Virology. isfev.org. Accessed 13 June 2016

    Google Scholar 

  120. ISO/TS 15216-1:2013 Microbiology of food and animal feed – Horizontal method for determination of hepatitis A virus and norovirus in food using real-time RT-PCR – Part 1: Method for quantification

    Google Scholar 

  121. ISO/TS 15216-2:2013(en) Microbiology of food and animal feed — Horizontal method for determination of hepatitis A virus and norovirus in food using real-time RT-PCR – Part 2: Method for qualitative detection

    Google Scholar 

  122. Jofre J (2007) Indicators of waterborne enteric viruses. In: Bosch A (ed) Human viruses in water, 1st edn. Elsevier, Amsterdam, pp 227–249

    Google Scholar 

  123. Kapikian AZ, Wyatt RG, Dolin R et al (1972) Visualization by immune electron microscopy of a 27-nm particle associated with acute infectious nonbacterial gastroenteritis. J Virol 10:1075–1081

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Kapoor A, Slikas E, Simmonds P et al (2009) A newly identified bocavirus species in human stool. J Infect Dis 199(2):196–200. doi:10.1086/595831

    Article  PubMed  PubMed Central  Google Scholar 

  125. Katayama H, Shimasaki A, Ohgaki S (2002) Development of a virus concentration method and its application to detection of enterovirus and Norwalk virus from coastal seawater. Appl Environ Microbiol 68(3):1033–1039. doi:10.1128/AEM.68.3.1033-1039.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Keller R, Justino JF, Cassini ST (2013) Assessment of water and seafood microbiology quality in a mangrove region in Vitória, Brazil. J Water Health 11(3):573–580. doi:10.2166/wh.2013.245

    Article  CAS  PubMed  Google Scholar 

  127. Kingsley DH, Holliman DR, Calci KR et al (2007) Inactivation of a norovirus by high-pressure processing. Appl Environ Microbiol 73(2):581–585. doi:10.1128/AEM.02117-06

    Article  CAS  PubMed  Google Scholar 

  128. Kishida N, Noda N, Haramoto E et al (2014) Quantitative detection of human enteric adenoviruses in river water by microfluidic digital polymerase chain reaction. Water Sci Technol 70(3):555–560. doi:10.2166/wst.2014.262

    Article  CAS  PubMed  Google Scholar 

  129. Kluge M, Fleck JD, Soliman MC et al (2014) Human adenovirus (HAdV), human enterovirus (hEV), and genogroup A rotavirus (GARV) in tap water in southern Brazil. J Water Health 12(3):526–532. doi:10.2166/wh.2014.202

    Article  CAS  PubMed  Google Scholar 

  130. Ko G, Cromeans TL, Sobsey MD (2003) Detection of infectious adenovirus in cell culture by mRNA reverse transcription-PCR. Appl Environ Microbiol 69(12):7377–7384. doi:10.1128/AEM.69.12.7377-7384.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kramer A, Schwebke I, Kampf G (2006) How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis 6:130. doi:10.1186/1471-2334-6-130

    Article  PubMed  PubMed Central  Google Scholar 

  132. Kuo HW, Chen LZ, Shih MH (2015) High prevalence of type 41 and high sequence diversity of partial hexon gene of human adenoviruses in municipal raw sewage and activated sludge. J Appl Microbiol 119(4):1181–1195. doi:10.1111/jam.12907

    Article  PubMed  Google Scholar 

  133. Lamhoujeb S, Fliss I, Ngazoa SE et al (2008) Evaluation of the persistence of infectious human noroviruses on food surfaces by using real-time nucleic acid sequence-based amplification. J Appl Environ Microbiol 74(11):3349–3355. doi:10.1128/AEM.02878-07

    Article  CAS  Google Scholar 

  134. Laverick MA, Wyn-Jones AP, Carter MJ (2004) Quantitative RT-PCR for the enumeration of noroviruses (Norwalk-like viruses) in water and sewage. Lett Appl Microbiol 39(2):127–136. doi:10.1111/j.1472-765X.2004.01534.x

    Article  CAS  PubMed  Google Scholar 

  135. Le Guyader FS, Parnaudeau S, Schaeffer J et al (2009) Detection and quantification of noroviruses in shellfish. Appl Environ Microbiol 75(3):618–624. doi:10.1128/AEM.01507-08

    Article  PubMed  CAS  Google Scholar 

  136. Lewis GD, Metcalf TG (1988) Polyethylene glycol precipitation for recovery of pathogenic viruses, including hepatitis A virus and human rotavirus, from oyster, water, and sediment samples. Appl Environ Microbiol 54(8):1983–1988

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Liu L, Oza S, Hogan D et al (2015) Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet 385(9966):430–440. doi:10.1016/S0140-6736(14)61698-6

    Article  PubMed  Google Scholar 

  138. Lizasoain A, Tort LF, García M et al (2015a) Environmental assessment of classical human astrovirus in Uruguay. Food Environ Virol 7:42. doi:10.1007/s12560-015-9186-4

    Article  Google Scholar 

  139. Lizasoain A, Tort LF, García M et al (2015b) Environmental assessment reveals the presence of MLB-1human astrovirus in Uruguay. J Appl Microbiol 119(3):859–867. doi:10.1111/jam.12856

    Article  CAS  PubMed  Google Scholar 

  140. Machado CJS, Miagostovich MP, Leite JPG et al (2013) Promoção da relação saúde-saneamento-cidade por meio da Virologia Ambiental. Rev Inform Leg 50(199):321–345

    Google Scholar 

  141. Mäde D, Trübner K, Neubert E et al (2013) Detection and typing of norovirus from frozen strawberries involved in a large-scale gastroenteritis outbreak in Germany. Food Environ Virol 5:162–168. doi:10.1007/s12560-013-9118-0

    Article  PubMed Central  Google Scholar 

  142. Marti E, Barardi CR (2016) Detection of human adenoviruses in organic fresh produce using molecular and cell culture-based methods. Int J Food Microbiol 230:40–44. doi:10.1016/j.ijfoodmicro.2016.04.018

    Article  CAS  PubMed  Google Scholar 

  143. Martin-Latil S, Hennechart-Collette C, Guillier L et al (2012) Comparison of two extraction methods for the detection of hepatitis A virus in semi-dried tomatoes and murine norovirus as a process control by duplex RT-qPCR. Food Environ Microbiol 31(2):246–253. doi:10.1016/j.fm.2012.03.007

    Article  CAS  Google Scholar 

  144. Martínez Wassaf MG, Pisano MB, Barril PA et al (2014) First detection of hepatitis E virus in Central Argentina: environmental and serological survey. J Clin Virol 61(3):334–339. doi:10.1016/j.jcv.2014.08.016

    Article  PubMed  Google Scholar 

  145. Más Lago P, Gary HE Jr, Pérez LS et al (2003) Poliovirus detection in wastewater and stools following an immunization campaign in Havana, Cuba. Int J Epidemiol 32(5):772–777. doi:10.1093/ije/dyg185

    Article  PubMed  Google Scholar 

  146. Mattison K, Brassard J, Gagné MJ et al (2009) The feline calicivirus as a sample process control for the detection of food and waterborne RNA viruses. Int J Food Microbiol 132(1):73–77. doi:10.1016/j.ijfoodmicro.2009.04.002

    Article  CAS  PubMed  Google Scholar 

  147. Maunula L, Kaupke A, Vasickova P et al (2013) Tracing enteric viruses in the European berry fruit supply chain. Int J Food Microbiol 167:177–185. doi:10.1016/j.ijfoodmicro.2013.09.003

    Article  PubMed  Google Scholar 

  148. Maurer CP, Simonetti AB, Staggemeier R et al (2015) Adenovirus, enterovirus and thermotolerant coliforms in recreational waters from Lake Guaíba beaches, Porto Alegre, Brazil. J Water Health 13(4):1123–1129. doi:10.2166/wh.2015.277

    Article  CAS  PubMed  Google Scholar 

  149. McQuaig SM, Scott TM, Lukasik JO et al (2009) Quantification of human polyomaviruses JC virus and BK virus by TaqMan quantitative PCR and comparison to other water quality indicators in water and fecal samples. Appl Environ Microbiol 75(11):3379–3388. doi:10.1128/AEM.02302-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Mehnert DU, Stewien KE (1993) Detection and distribution of rotavirus in raw sewage and creeks in São Paulo, Brazil. Appl Environ Microbiol 59(1):140–143

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Melgaço FG (2016) Avaliação de metodologia de floculação orgânica para recuperação de vírus entéricos em frutas e queijos. Dissertation, Oswaldo Cruz Foundation

    Google Scholar 

  152. Melgaço FG, Victoria M, Corrêa AA et al (2016) Virus recovering from strawberries: evaluation of a skimmed milk organic flocculation method for assessment of microbiological contamination. Int J Food Microbiol 217:14–19. doi:10.1016/j.ijfoodmicro.2015.10.005

    Article  PubMed  CAS  Google Scholar 

  153. Melnick JL (1947) Poliomyelitis virus in urban sewage in epidemic and non-epidemic times. Am J Hyg 45(2):240–253

    CAS  PubMed  Google Scholar 

  154. Mena KD (2007) Waterborne viruses: assessing the risks. In: Bosch A (ed) Human viruses in water, 1st edn. Elsevier, Amsterdam, pp 163–175

    Google Scholar 

  155. Metcalf TG, Melnick JL, Estes MK (1995) Environmental virology: from detection of virus in sewage and water by isolation to identification by molecular biology-a trip of over 50 years. Annu Rev Microbiol 49:461–487. doi:10.1146/annurev.mi.49.100195.002333

    Article  CAS  PubMed  Google Scholar 

  156. Metcalf TG, Moulton E, Eckerson D (1980) Improved method and test strategy for recovery of enteric viruses from shellfish. Appl Environ Microbiol 39(1):141–152

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Mezzanotte V, Antonelli M, Citterio S et al (2007) Wastewater disinfection alternatives: chlorine, ozone, peracetic acid, and UV light. Water Environ Res 79:2373–2379. doi: http://dx.doi.org/10.2175/106143007X183763

  158. Miagostovich MP, Ferreira FF, Guimarães FR et al (2008) Molecular detection and characterization of gastroenteritis viruses occurring naturally in the stream waters of Manaus, central Amazonia, Brazil. Appl Environ Microbiol 74(2):375–382. doi:10.1128/AEM.00944-07

    Article  CAS  PubMed  Google Scholar 

  159. Miagostovich MP, Guimarães FR, Vieira CB et al (2014) Assessment of water quality in a border region between the Atlantic forest and an urbanised area in Rio de Janeiro, Brazil. Food Environ Virol 6(2):110–115. doi:10.1007/s12560-014-9146-4

    Article  CAS  PubMed  Google Scholar 

  160. Morales-Rayas R, Wolffs PFG, Griffiths MW (2009) Anion-exchange filtration and real-time PCR for the detection of a norovirus surrogate in food. J Food Prot 72(10):2178–2183

    Article  CAS  PubMed  Google Scholar 

  161. Moreno L, Aznar R, Sánchez G (2015) Application of viability PCR to discriminate the infectivity of hepatitis A virus in food samples. Int J Food Microbiol 201:1–6. doi:10.1016/j.ijfoodmicro.2015.02.012

    Article  CAS  PubMed  Google Scholar 

  162. Moreno S, Alvarado MV, Bermúdez A et al (2009) Phylogenetic analysis indicates human origin of rotavirus and hepatitis A virus strains found in the drinking water of western Colombia. Biomedica 29(2):209–217

    Article  PubMed  Google Scholar 

  163. Moresco V, Damazo NA, Barardi CR (2016) Rotavirus vaccine stability in the aquatic environment. J Appl Microbiol 120(2):321–328. doi:10.1111/jam.13021

    Article  CAS  PubMed  Google Scholar 

  164. Moresco V, Viancelli A, Nascimento MA et al (2012) Microbiological and physicochemical analysis of the coastal waters of southern Brazil. Mar Pollut Bull 64(1):40–48. doi:10.1016/j.marpolbul.2011.10.026

    Article  CAS  PubMed  Google Scholar 

  165. Morillo SG, Luchs A, Cilli A et al (2012) Rapid detection of norovirus in naturally contaminated food: foodborne gastroenteritis outbreak on a cruise ship in Brazil, 2010. Food Environ Virol 4(3):124–129. doi:10.1007/s12560-012-9085-x

    Article  PubMed  Google Scholar 

  166. Morris CA, Flewett TH, Burden AS, Davis H et al (1975) Epidemic viral enteritis in a long-stay children’s ward. Lancet 1(7897):4–5

    CAS  PubMed  Google Scholar 

  167. Mueller JE, Bessaud M, Huang QS et al (2009) Environmental poliovirus surveillance during oral poliovirus vaccine and inactivated poliovirus vaccine use in Córdoba Province, Argentina. Appl Environ Microbiol 75(5):1395–1401. doi:10.1128/AEM.02201-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Nascimento MA, Magri ME, Schissi CD et al (2015) Recombinant adenovirus as a model to evaluate the efficiency of free chlorine disinfection in filtered water samples. Virol J 12:30. doi:10.1186/s12985-015-0259-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Nuanualsuwan S, Cliver DO (2002) Pretreatment to avoid positive RT-PCR results with inactivated viruses. J Virol Methods 104(2):217–225. doi:10.1016/S0166-0934(02)00089-7

    Article  CAS  PubMed  Google Scholar 

  170. Okoh AI, Sibanda T, Gusha SS (2010) Inadequately treated wastewater as a source of human enteric viruses in the environment. Int J Environ Res Public Health 7(6):2620–2637. doi:10.3390/ijerph7062620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. PAHO – Pan American Health Organization (2016) Pan American Health Organization. http://www.paho.org/hq/index.php?option=com_content&view=article&id=5172&Itemid=40085&lang=es. Accessed 13 June 2016

  172. Papafragkou E, Hewitt J, Park GW et al (2013) Challenges of culturing human norovirus in three-dimensional organoid intestinal cell culture models. PLoS One 8(6):e63485. doi:10.1371/journal.pone.0063485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Parada-Fabián JC, Juárez-García P, Natividad-Bonifacio I et al (2016) Identification of enteric viruses in foods from Mexico City. Food Environ Virol. doi:10.1007/s12560-016-9244-6

  174. Parshionikar S, Laseke I, Fout GS (2010) Use of propidium monoazide in reverse transcriptase PCR to distinguish between infectious and noninfectious enteric viruses in water samples. Appl Environ Microbiol 76:4318–4326. doi:10.1128/AEM.02800-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Payment P, Locas A (2011) Pathogens in water: value and limits of correlation with microbial indicators. Ground Water 49(1):4–11. doi:10.1111/j.1745-6584.2010.00710.x

    Article  CAS  PubMed  Google Scholar 

  176. Pereira, JSO (2013) Vigilância ambiental dos poliovírus, no município do Rio de Janeiro, em apoio às atividades de erradicação global da poliomielite. Dissertation, Oswaldo Cruz Foundation

    Google Scholar 

  177. Phan TG, Mori D, Deng X et al (2015) Small circular single stranded DNA viral genomes in unexplained cases of human encephalitis, diarrhea, and in untreated sewage. Virology 482:98–104. doi:10.1016/j.virol.2015.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Pina S, Puig M, Lucena F et al (1998) Viral pollution in the environment and in shellfish: human adenovirus detection by PCR as an index of human viruses. Appl Environ Microbiol 64(9):3376–3382

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Poma HR, Rajal VB, Blanco Fernández MD et al (2013) Evaluation of concentration efficiency of the Pseudomonas aeruginosa phage PP7 in various water matrixes by different methods. Environ Monit Assess 185(3):2565–2576. doi:10.1007/s10661-012-2731-9

    Article  CAS  PubMed  Google Scholar 

  180. Prado T, Fumian TM, Miagostovich MP et al (2012) Monitoring the hepatitis A virus in urban wastewater from Rio de Janeiro, Brazil. Trans R Soc Trop Med Hyg 106(2):104–109. doi:10.1016/j.trstmh.2011.10.005

    Article  PubMed  Google Scholar 

  181. Prado T, Gaspar AM, Miagostovich MP (2014) Detection of enteric viruses in activated sludge by feasible concentration methods. Braz J Microbiol 45(1):343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Prado T, Guilayn WCPB, Gaspar AM et al (2013) The efficiency of concentration methods used to detect enteric viruses in anaerobically digested sludge. Mem Inst Oswaldo Cruz 108(1):77–83. doi:10.1590/S0074-02762013000100013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Prado T, Silva DM, Guilayn WC et al (2011) Quantification and molecular characterization of enteric viruses detected in effluents from two hospital wastewater treatment plants. Water Res 45(3):1287–1297. doi:10.1016/j.watres.2010.10.012

    Article  CAS  PubMed  Google Scholar 

  184. Prevost B, Goulet M, Lucas FS et al (2016) Viral persistence in surface and drinking water: suitability of PCR pre-treatment with intercalating dyes. Water Res 91:68–76. doi:10.1016/j.watres.2015.12.049

    Article  CAS  PubMed  Google Scholar 

  185. Prez VE, Gil PI, Temprana CF et al (2015) Quantification of human infection risk caused by rotavirus in surface waters from Córdoba, Argentina. Sci Total Environ 538:220–229. doi:10.1016/j.scitotenv.2015.08.041

    Article  CAS  PubMed  Google Scholar 

  186. Pusch D, Oh DY, Wolf S et al (2005) Detection of enteric viruses and bacterial indicators in German environmental waters. Arch Virol 150(5):929–947. doi:10.1007/s00705-004-0467-8

    Article  CAS  PubMed  Google Scholar 

  187. Queiroz AP, Santos FM, Sassaroli A et al (2001) Electropositive filter membrane as an alternative for the elimination of PCR inhibitors from sewage and water samples. Appl Environ Microbiol 67(10):4614–4618. doi:10.1128/AEM.67.10.4614-4618.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Quiroz-Santiago C, Vázquez-Salinas C, Natividad-Bonifacio I et al (2014) Rotavirus G2P[4] detection in fresh vegetables and oysters in Mexico City. J Food Prot 77(11):1953–1959. doi:10.4315/0362-028X.JFP-13-426

    Article  PubMed  CAS  Google Scholar 

  189. Rački N, Morisset D, Gutierrez-Aguirre I et al (2014) One-step RT-droplet digital PCR: a breakthrough in the quantification of waterborne RNA viruses. Anal Bioanal Chem 406(3):661–667. doi:10.1007/s00216-013-7476-y

    Article  PubMed  CAS  Google Scholar 

  190. Ramani S, Arumugam R, Gopalarathinam N et al (2008) Investigation of the environment and of mothers in transmission of rotavirus infections in the neonatal nursery. J Med Virol 80(6):1099–1105. doi:10.1002/jmv.21177

    Article  CAS  PubMed  Google Scholar 

  191. Randazzo W, López-Gálvez F, Allende A et al (2016) Evaluation of viability PCR performance for assessing norovirus infectivity in fresh-cut vegetables and irrigation water. Int J Food Microbiol 229:1–6. doi:10.1016/j.ijfoodmicro.2016.04.010

    Article  CAS  PubMed  Google Scholar 

  192. Ravaliya K, Gentry-Shields J, Garcia S et al (2014) Use of Bacteroidales microbial source tracking to monitor fecal contamination in fresh produce production. Appl Environ Microbiol 80(2):612–617. doi:10.1128/AEM.02891-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Retter M, Middleton PJ, Tam JS et al (1979) Enteric adenoviruses: detection, replication, and significance. J Clin Microbiol 10:574–578

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Reynolds KA, Gerba CP, Abbaszadegan M et al (2001) ICC/PCR detection of enteroviruses and hepatitis A virus in environmental samples. Can J Microbiol 47(2):153–157

    Article  CAS  PubMed  Google Scholar 

  195. Reynolds KA, Gerba CP, Pepper IL (1996) Detection of infectious enteroviruses by an integrated cell culture-PCR procedure. Appl Environ Microbiol 62(4):1424–1427

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Rezaeinejad S, Vergara GG, Woo CH et al (2014) Surveillance of enteric viruses and coliphages in a tropical urban catchment. Water Res 58:122–131. doi:10.1016/j.watres.2014.03.051

    Article  CAS  PubMed  Google Scholar 

  197. Rigotto C, Sincero TC, Simões CM et al (2005) Detection of adenoviruses in shellfish by means of conventional-PCR, nested-PCR, and integrated cell culture PCR (ICC/PCR). Water Res 39(2–3):297–304. doi:10.1016/j.watres.2004.10.005

    Article  CAS  PubMed  Google Scholar 

  198. Rigotto C, Victoria M, Moresco V et al (2010) Assessment of adenovirus, hepatitis A virus and rotavirus presence in environmental samples in Florianopolis, South Brazil. J Appl Microbiol 109(6):1979–1987. doi:10.1111/j.1365-2672.2010.04827.x

    Article  CAS  PubMed  Google Scholar 

  199. Rock C, Alum A, Abbaszadegan M (2010) PCR inhibitor levels in concentrates of biosolid samples predicted by a new method based on excitation-emission matrix spectroscopy. Appl Environ Microbiol 76(24):8102–8109. doi:10.1128/AEM.02339-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Rodrigues MT, Henzel A, Staggemeier R et al (2015) Human adenovirus spread, rainfalls, and the occurrence of gastroenteritis cases in a Brazilian basin. Environ Monit Assess 187(11):720. doi:10.1007/s10661-015-4917-4

    Article  PubMed  CAS  Google Scholar 

  201. Rodríguez-Díaz J, Querales L, Caraballo L et al (2009) Detection and characterization of waterborne gastroenteritis viruses in urban sewage and sewage-polluted river waters in Caracas, Venezuela. Appl Environ Microbiol 75(2):387–394. doi:10.1128/AEM.02045-08

    Article  PubMed  CAS  Google Scholar 

  202. Rodríguez-Lázaro D, Cook N, Ruggeri FM et al (2012) Virus hazards from food, water and other contaminated environments. FEMS Microbiol Rev 36(4):786–814. doi:10.1111/j.1574-6976.2011.00306.x

    Article  PubMed  CAS  Google Scholar 

  203. Rodriguez-Manzano J, Miagostovich M, Hundesa A et al (2010) Analysis of the evolution in the circulation of HAV and HEV in Eastern Spain by testing urban sewage samples. J Water Health 8(2):346e354. doi:10.2166/wh.2009.042

    Article  CAS  Google Scholar 

  204. Rusiñol M, Carratalà A, Hundesa A et al (2013) Description of a novel viral tool to identify and quantify ovine faecal pollution in the environment. Sci Total Environ 458-460:355–360. doi:10.1016/j.scitotenv.2013.04.028

    Article  PubMed  CAS  Google Scholar 

  205. Rusiñol M, Fernandez-Cassi X, Hundesa A et al (2014) Application of human and animal viral microbial source tracking tools in fresh and marine waters from five different geographical areas. Water Res 59:119–129. doi:10.1016/j.watres.2014.04.013

    Article  PubMed  CAS  Google Scholar 

  206. Rutala WA, Peacock JE, Gergen MF et al (2006) Efficacy of hospital germicides against adenovirus 8, a common cause of epidemic keratoconjunctivitis in health care facilities. Antimicrob Agents Chemother 50:1419–1424. doi:10.1128/AAC.50.4.1419-1424.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Rzezutka A, Alotaibi M, D’Agostino M et al (2005) A centrifugation-based method for extraction of norovirus from raspberries. J Food Prot 68(9):1923–1925

    Article  CAS  PubMed  Google Scholar 

  208. Rzezutka A, Cook N (2004) Survival of human enteric viruses in the environment and food. FEMS Microbiol Rev 28(4):441–453. doi:http://dx.doi.org/10.1016/j.femsre.2004.02.001

  209. Sano D, Fukushi K, Yoshida Y et al (2003) Detection of enteric viruses in municipal sewage sludge by a combination of the enzymatic virus elution method and RT-PCR. Water Res 37:3490–3498. doi:10.1016/S0043-1354(03)00208-2

    Article  CAS  PubMed  Google Scholar 

  210. Sassoubre LM, Love DC, Silverman AI et al (2012) Comparison of enterovirus and adenovirus concentration and enumeration methods in seawater from Southern California, USA and Baja Malibu, Mexico. J Water Health 10(3):419–430. doi:10.2166/wh.2012.011

    Article  CAS  PubMed  Google Scholar 

  211. Sattar SA (2004) Microbicides and the environmental control of nosocomial viral infections. J Hosp Infect 56(Suppl 2):S64–S69

    Article  PubMed  Google Scholar 

  212. Sattar SA, Lloyd-Evans N, Springthorpe VS et al (1986) Institutional outbreaks of rotavirus diarrhoea: potential role of fomites and environmental surfaces as vehicles for virus transmission. J Hyg (Lond) 96(2):277–289

    Article  CAS  Google Scholar 

  213. Sattar SA, Springthorpe VS (1996) Transmission of viral infections through animate and inanimate surfaces and infection control through chemical disinfection. In: Hurst CJ (ed) Modeling disease transmission and its prevention by disinfection. Cambridge University Press, Cambridge, pp 224–257

    Google Scholar 

  214. Scherer K, Johne R, Schrader C et al (2010) Comparison of two extraction methods for viruses in food and application in a norovirus gastroenteritis outbreak. J Virol Methods 169(1):22–27. doi:10.1016/j.jviromet.2010.06.008

    Article  CAS  PubMed  Google Scholar 

  215. Schlindwein AD, Rigotto C, Simões MO et al (2010) Detection of enteric viruses in sewage sludge and treated wastewater effluent. Water Sci Technol 61(2):537–544. doi:10.2166/wst.2010.845

    Article  CAS  PubMed  Google Scholar 

  216. Silva HD, Fongaro G, Garcíazapata MT et al (2015) High species C human adenovirus genome copy numbers in the treated water supply of a neotropical area of the central-west region of Brazil. Food Environ Virol 7(3):286–294. doi:10.1007/s12560-015-9192-6

    Article  PubMed  Google Scholar 

  217. Silva LM, Souza EH, Arrebola TM et al (2009) Occurrence of a hepatitis A outbreak in three neighborhoods of the city of Vitória, Espírito Santo State, and its relation with the quality of the water for human consumption. Cien Saude Colet 14(6):2163–2167

    Article  PubMed  Google Scholar 

  218. Simmons FJ, Xagoraraki I (2011) Release of infectious human enteric viruses by full-scale wastewater utilities. Water Res 45:3590–3598. doi:10.1016/j.watres.2011.04.001

    Article  CAS  PubMed  Google Scholar 

  219. Simonet J, Gantzer C (2006a) Degradation of the Poliovirus 1 genome by chlorine dioxide. J Appl Microbiol 100(4):862–870. doi:10.1111/j.1365-2672.2005.02850.x

    Article  CAS  PubMed  Google Scholar 

  220. Simonet J, Gantzer C (2006b) Inactivation of poliovirus 1 and F-specific RNA phages and degradation of their genomes by UV irradiation at 254 nanometers. Appl Environ Microbiol 72(12):7671–7677. doi:10.1128/AEM.01106-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Sincero TC, Levin DB, Simões CM et al (2006) Detection of hepatitis A virus (HAV) in oysters (Crassostrea gigas). Water Res 40(5):895–902. doi:10.1016/j.watres.2005.12.005

    Article  CAS  PubMed  Google Scholar 

  222. Sobsey MD, Carrick RJ, Jensen HR (1978) Improved methods for detecting enteric viruses in oysters. Appl Environ Microbiol 36(1):121–128

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Souza DS, Ramos AP, Nunes FF et al (2012) Evaluation of tropical water sources and mollusks in southern Brazil using microbiological, biochemical, and chemical parameters. Ecotoxicol Environ Saf 76(2):153–161. doi:10.1016/j.ecoenv.2011.09.018

    Article  CAS  PubMed  Google Scholar 

  224. Spilki FR, da Luz RB, Fabres RB et al (2014) Detection of human adenovirus, rotavirus and enterovirus in water samples collected on dairy farms from Tenente Portela, Northwest of Rio Grande do Sul, Brazil. Braz J Microbiol 44(3):953–957

    Article  PubMed  PubMed Central  Google Scholar 

  225. Stals A, Baert L, Botteldoorn N et al (2009) Multiplex real-time RT-PCR for simultaneous detection of GI/GII noroviruses and murine norovirus 1. J Virol Methods 161(2):247–253. doi:10.1016/j.jviromet.2009.06.019

    Article  CAS  PubMed  Google Scholar 

  226. Stals A, Baert L, Keuckelaere AD et al (2011a) Evaluation of a norovirus detection methodology for ready-to-eat foods. Int J Food Microbiol 145(2–3):420–425. doi:10.1016/j.ijfoodmicro.2011.01.013

    Article  CAS  PubMed  Google Scholar 

  227. Stals A, Baert L, Van Coillie E et al (2011b) Evaluation of a norovirus detection methodology for soft red fruits. Food Microbiol 28(1):52–58. doi:10.1016/j.fm.2010.08.004

    Article  PubMed  Google Scholar 

  228. Stals A, Baert L, Van Coillie E et al (2012) Extraction of food-borne viruses from food samples: a review. Int J Food Microbiol 153(1–2):1–9. doi:10.1016/j.ijfoodmicro.2011.10.014

    Article  PubMed  Google Scholar 

  229. Summa M, von Bonsdorff CH, Maunula L (2012) Evaluation of four virus recovery methods for detecting noroviruses on fresh lettuce, sliced ham, and frozen raspberries. J Virol Methods 183(2):154–160. doi:10.1016/j.jviromet.2012.04.006

    Article  CAS  PubMed  Google Scholar 

  230. Sutmoller F, Gaspar AM, Cynamon SE et al (1982) A water-borne hepatitis A outbreak in Rio de Janeiro. Mem Inst Oswaldo Cruz 77(1):9–17. doi:http://dx.doi.org/10.1590/S0074-02761982000100002

  231. Symonds EM, Verbyla ME, Lukasik JO et al (2014) A case study of enteric virus removal and insights into the associated risk of water reuse for two wastewater treatment pond systems in Bolivia. Water Res 65:257–270. doi:10.1016/j.watres.2014.07.032

    Article  CAS  PubMed  Google Scholar 

  232. Tambini G, Andrus JK, Marques E et al (1993) Direct detection of wild poliovirus circulation by stool surveys of healthy children and analysis of community wastewater. J Infect Dis 168(6):1510–1514. doi:10.1093/infdis/168.6.1510

    Article  CAS  PubMed  Google Scholar 

  233. Teixeira DM, Hernandez JM, Silva LD et al (2016) Occurrence of norovirus GIV in environmental water samples from Belém City, Amazon Region, Brazil. Food Environ Virol 8(1):101–104. doi:10.1007/s12560-015-9220-6

    Article  PubMed  Google Scholar 

  234. Templeton M, Hofmann RA (2004) Ultraviolet disinfection of particle-associated viruses. In: Hahn H, Hoffman E, Odegaard H (eds) Chemical water and wastewater treatment. IWA Publishing, London, pp 109–116

    Google Scholar 

  235. Teunis PF, Moe CL, Liu P et al (2008) Norwalk virus: how infectious is it? J Med Virol 80(8):1468–1476. doi:10.1002/jmv.21237

    Article  PubMed  Google Scholar 

  236. Todd EC, Greig JD, Bartleson CA et al (2009) Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 6. Transmission and survival of pathogens in the food processing and preparation environment. J Food Prot 72:202–219

    Article  PubMed  Google Scholar 

  237. Topping JR, Schnerr H, Haines J et al (2009) Temperature inactivation of Feline calicivirus vaccine strain FCV F-9 in comparison with human noroviruses using an RNA exposure assay and reverse transcribed quantitative real-time polymerase chain reaction: a novel method for predicting virus infectivity. Virol Methods 156(1-2):89–95. doi:10.1016/j.jviromet.2008.10.024

    Article  CAS  Google Scholar 

  238. Torres C, Barrios ME, Cammarata RV et al (2016) High diversity of human polyomaviruses in environmental and clinical samples in Argentina: detection of JC, BK, Merkel-cell, Malawi, and human 6 and 7 polyomaviruses. Sci Total Environ 542(pt A):192–202. doi:10.1016/j.scitotenv.2015.10.047

    Article  CAS  PubMed  Google Scholar 

  239. Tort LF, Victoria M, Lizasoain A et al (2015) Detection of common, emerging and uncommon VP4, and VP7 human group A rotavirus genotypes from urban sewage samples in Uruguay. Food Environ Virol 7(4):342–353. doi:10.1007/s12560-015-9213-5

    Article  CAS  PubMed  Google Scholar 

  240. Troy SB, Ferreyra-Reyes L, Canizales-Quintero S et al (2012) Real-time polymerase chain reaction analysis of sewage samples to determine oral polio vaccine circulation duration and mutation after Mexican national immunization weeks. J Pediatr Infect Dis Soc 1(3):223–229. doi:10.1093/jpids/pis062

    Article  Google Scholar 

  241. Troy SB, Ferreyra-Reyes L, Huang C et al (2011) Use of a novel real-time PCR assay to detect oral polio vaccine shedding and reversion in stool and sewage samples after a Mexican national immunization day. J Clin Microbiol 49(5):1777–1783. doi:10.1128/JCM.02524-10

    Article  PubMed  PubMed Central  Google Scholar 

  242. Ueda T, Horan NJ (2000) Fate of indigenous bacteriophage in a membrane bioreactor. Water Res 34(7):2151–2159

    Article  CAS  Google Scholar 

  243. Uhrbrand K, Myrmel M, Maunula L et al (2010) Evaluation of a rapid method for recovery of norovirus and hepatitis A virus from oysters and blue mussels. J Virol Methods 169(1):70–78. doi:10.1016/j.jviromet.2010.06.019

    Article  CAS  PubMed  Google Scholar 

  244. Vanessa dos Santos da Silva J, Henrique de Mello M, Staggemeier R et al (2014) Adenovirus presence in surfaces and equipment from ambulatories, internship units, and operating room in a Brazilian hospital. Am J Infect Control 42(6):693–694. doi:10.1016/j.ajic.2014.02.007

    Article  PubMed  Google Scholar 

  245. Vecchia AD, Fleck JD, Comerlato J et al (2012) Assessment of enteric viruses in a sewage treatment plant located in Porto Alegre, southern Brazil. Braz J Biol 72(4):839–846. doi:http://dx.doi.org/10.1590/S1519-69842012000500009

  246. Vecchia AD, Kluge M, dos Santos da Silva JV et al (2013) Presence of Torque teno virus (TTV) in tap water in public schools from Southern Brazil. Food Environ Virol 5(1):41–45. doi:10.1007/s12560-012-9096-7

    Article  PubMed  Google Scholar 

  247. Verbyla ME, Symonds EM, Kafle RC et al (2016) Managing microbial risks from indirect wastewater reuse for irrigation in urbanizing watersheds. Environ Sci Technol 50(13):6803–6813. doi:10.1021/acs.est.5b05398

    Article  CAS  PubMed  Google Scholar 

  248. Vergara GG, Goh SG, Rezaeinejad S et al (2015) Evaluation of FRNA coliphages as indicators of human enteric viruses in a tropical urban freshwater catchment. Water Res 79:39–47. doi:10.1016/j.watres.2015.04.022

    Article  CAS  PubMed  Google Scholar 

  249. Verhoef L, Depoortere E, Boxman I et al (2008) Emergence of new norovirus variants on spring cruise ships and prediction of winter epidemics. Emerg Infect Dis 14(2):238–243. doi:10.3201/eid1402.061567

    Article  PubMed  PubMed Central  Google Scholar 

  250. Viancelli A, Garcia LA, Schiochet M et al (2012) Culturing and molecular methods to assess the infectivity of porcine circovirus from treated effluent of swine manure. Res Vet Sci 93(3):1520–1524. doi:10.1016/j.rvsc.2012.02.005

    Article  CAS  PubMed  Google Scholar 

  251. Victoria M, Guimarães F, Fumian T et al (2009) Evaluation of an adsorption-elution method for detection of astrovirus and norovirus in environmental waters. J Virol Methods 156(1–2):73–76. doi:10.1016/j.jviromet.2008.11.003

    Article  CAS  PubMed  Google Scholar 

  252. Victoria M, Guimarães FR, Fumian TM et al (2010a) One year monitoring of norovirus in a sewage treatment plant in Rio de Janeiro, Brazil. J Water Health 8(1):158–165. doi:10.2166/wh.2009.012

    Article  CAS  PubMed  Google Scholar 

  253. Victoria M, Rigotto C, Moresco V et al (2010b) Assessment of norovirus contamination in environmental samples from Florianópolis City, Southern Brazil. J Appl Microbiol 109(1):231–238. doi:10.1111/j.1365-2672.2009.04646.x

    CAS  PubMed  Google Scholar 

  254. Victoria M, Tort LF, García M et al (2014) Assessment of gastroenteric viruses from wastewater directly discharged into Uruguay River, Uruguay. Food Environ Virol 6(2):116–124. doi:10.1007/s12560-014-9143-7

    Article  CAS  PubMed  Google Scholar 

  255. Victoria M, Tort LF, Lizasoain A et al (2016) Norovirus molecular detection in Uruguayan sewage samples reveals a high genetic diversity and GII.4 variant replacement along time. J Appl Microbiol 120(5):1427–1435. doi:10.1111/jam.13058

    Article  CAS  PubMed  Google Scholar 

  256. Vieira CB (2015) Rastreamento microbiológico de fontes de contaminação humana e animal por marcadores virais e avaliação de risco de infecções por vírus gastroentéricos na bacia do Rio Negro, Manaus, Amazonas. Dissertation, Oswaldo Cruz Foundation

    Google Scholar 

  257. Vieira CB, de Abreu CA, de Jesus MS et al (2016) Viruses surveillance under different season scenarios of the Negro River Basin, Amazonia, Brazil. Food Environ Virol 8(1):57–69. doi:10.1007/s12560-016-9226-8

    Article  PubMed  Google Scholar 

  258. Vieira CB, Mendes AC, Guimarães FR et al (2012) Detection of enteric viruses in recreational waters of an urban lagoon in the city of Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz 107(6):778–784. doi:http://dx.doi.org/10.1590/S0074-02762012000600012

  259. Villar LM, de Paula VS, Diniz-Mendes L et al (2006) Evaluation of methods used to concentrate and detect hepatitis A virus in water samples. J Virol Methods 137(2):169–176. doi:10.1016/j.jviromet.2006.06.008

    Article  CAS  PubMed  Google Scholar 

  260. Villar LM, de Paula VS, Diniz-Mendes L et al (2007) Molecular detection of hepatitis A virus in a urban sewage in Rio de janeiro, Brazil. Lett Appl Microbiol 45(2):168–173. doi:10.1111/j.1472-765X.2007.02164.x

    Article  CAS  PubMed  Google Scholar 

  261. Vivier JC, Ehlers MM, Grabow WO (2004) Detection of enterovirus in treated drinking water. Water Res 38(11):2699–2705

    Article  CAS  PubMed  Google Scholar 

  262. WHO – World Health Organization (2011) Guidelines for drinking-water quality. World Health Organization, Geneva

    Google Scholar 

  263. WHO – World Health Organization (2016) World Health Organization. http://www.who.int/water_sanitation_health/undwfl/en/. Accessed 13 June 2016

  264. Wobus CE, Thackray LB, Virgin HW 4th (2006) Murine Norovirus: a model system to study norovirus biology and pathogenesis. J Virol 80(11):5104–5112. doi:10.1128/JVI.02346-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Wolf S, Hewitt J, Greening GE (2010) Viral multiplex quantitative PCR assays for tracking sources of fecal contamination. Appl Environ Microbiol 76(5):1388–1391. doi:10.1128/AEM.02249-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Wong K, Fong TT, Bibby K et al (2012) Application of enteric viruses for fecal pollution source tracking in environmental waters. Environ Int 45:151–164. doi:10.1016/j.envint.2012.02.009

    Article  CAS  PubMed  Google Scholar 

  267. Wong K, Xagoraraki I (2011) Evaluating the prevalence and genetic diversity of adenovirus and polyomavirus in bovine waste for microbial source tracking. Appl Microbiol Biotechnol 90(4):1521–1526. doi:10.1007/s00253-011-3156-z

    Article  CAS  PubMed  Google Scholar 

  268. Wong K, Xagoraraki I (2010) Quantitative PCR assays to survey the bovine adenovirus levels in environmental samples. J Appl Microbiol 109(2):605–612. doi:10.1111/j.1365-2672.2010.04684.x

    CAS  PubMed  Google Scholar 

  269. Wyn-Jones AP, Sellwood J (2001) Enteric viruses in the aquatic environment. J Appl Microbiol 91(6):945–962. doi:10.1046/j.1365-2672.2001.01470.x

    Article  CAS  PubMed  Google Scholar 

  270. Yamashita T, Kobayashi S, Sakae K et al (1991) Isolation of cytopathic small round viruses with BS-C-1 cells from patients with gastroenteritis. J Infect Dis 164(5):954–957. doi:10.1093/infdis/164.5.954

    Article  CAS  PubMed  Google Scholar 

  271. Yanez LA, Lucero NS, Barril PA et al (2014) Evidence of hepatitis A virus circulation in central Argentina: seroprevalence and environmental surveillance. J Clin Virol 59(1):38–43. doi:10.1016/j.jcv.2013.11.005

    Article  PubMed  Google Scholar 

  272. Zintz C, Bok K, Parada E et al (2005) Prevalence and genetic characterization of caliciviruses among children hospitalized for acute gastroenteritis in the United States. Genet Evol 5(3):281–290. doi:10.1016/j.meegid.2004.06.010

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the editors and the institutions that have been supporting projects in environmental virology field at Oswaldo Cruz Institute/Fiocruz, Brazilian National Council for Scientific and Technological Development (CNPq), and Carlos Chagas Filho Foundation for Research Support in the state of Rio de Janeiro (Faperj). M.P.M. (research productivity) and C.B.V. (postdoctoral program) are fellowships of CNPq. This chapter is under the scope of the activities of Fiocruz as a collaborating center of PAHO/WHO of Public and Environmental Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marize Pereira Miagostovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Miagostovich, M.P., Vieira, C.B. (2017). Environmental Virology. In: Ludert, J., Pujol, F., Arbiza, J. (eds) Human Virology in Latin America. Springer, Cham. https://doi.org/10.1007/978-3-319-54567-7_6

Download citation

Publish with us

Policies and ethics