Skip to main content

Calicivirus Biology

  • Chapter
  • First Online:
Human Virology in Latin America

Abstract

The Caliciviridae family is composed of small non-enveloped viruses with a positive-sense RNA as a genome that infects both animals and humans, causing a wide range of diseases. Caliciviruses that infect humans are increasingly recognized as a major cause of outbreaks and sporadic cases of viral gastroenteritis worldwide, affecting people of all ages. As with other positive-sense RNA viruses, caliciviruses require interactions between viral components and host cell factors for a successful replicative cycle. This chapter presents information regarding cellular factors that contribute to calicivirus replication, emphasizing host cellular proteins involved in viral translation or RNA replication. Identifying the function of these molecules is important for the development of strategies for the control and prevention of calicivirus infections. Finally, following the introduction of the rotavirus vaccine in the expanded immunization programs of several countries in Latin America, surveillance of calicivirus epidemiology as a cause of diarrhea has become a new requirement in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed SM, Hall AJ, Robinson AE, Verhoef L, Premkumar P, Parashar UD, Koopmans M, Lopman BA (2014) Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. Lancet Infect Dis 14:725–730

    Article  PubMed  Google Scholar 

  2. Alcala AC, Rodriguez-Diaz J, de Rolo M, Vizzi E, Buesa J, Liprandi F, Ludert JE (2010) Seroepidemiology of porcine enteric sapovirus in pig farms in Venezuela. Vet Immunol Immunopathol 137:269–274

    Article  PubMed  Google Scholar 

  3. Alvarez-Sanchez C, Cancio-Lonches C, Mora-Heredia JE, Santos-Valencia JC, Barrera-Vazquez OS, Yocupicio-Monroy M, Gutierrez-Escolano AL (2015) Negative effect of heat shock on feline calicivirus release from infected cells is associated with the control of apoptosis. Virus Res 198:44–52

    Article  CAS  PubMed  Google Scholar 

  4. Bailey D, Karakasiliotis I, Vashist S, Chung LMW, Rees J, McFadden N, Benson A, Yarovinsky F, Simmonds P, Goodfellow I (2010) Functional analysis of RNA structures present at the 3′ extremity of the murine norovirus genome: the variable polypyrimidine tract plays a role in viral virulence. J Virol 84:2870–2859

    Google Scholar 

  5. Bank-Wolf BR, Konig M, Thiel HJ (2010) Zoonotic aspects of infections with noroviruses and sapoviruses. Vet Microbiol 140:204–212

    Article  PubMed  Google Scholar 

  6. Rowena B, White PA (2010) Genome oganization and recombination. In: Hansman GS, Jiang XJA, Green KY (eds) Caliciviruses, molecular and cellular virology. Caiser Academic Press, Norfolk, pp 45–63

    Google Scholar 

  7. Bertolotti-Ciarlet A, Crawford SE, Hutson AM, Estes MK (2003) The 3′ end of Norwalk virus mRNA contains determinants that regulate the expression and stability of the viral capsid protein VP1: a novel function for the VP2 protein. J Virol 77:11603–11615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bok K, Prikhodko VG, Green KY, Sosnovtsev SV (2009) Apoptosis in murine norovirus-infected RAW264.7 cells is associated with downregulation of survivin. J Virol 83:3647–3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cancio-Lonches C, Yocupicio-Monroy M, Sandoval-Jaime C, Galvan-Mendoza I, Urena L, Vashist S, Goodfellow I, Salas-Benito J, Gutierrez-Escolano AL (2011) Nucleolin interacts with the feline calicivirus 3′ untranslated region and the protease-polymerase NS6 and NS7 proteins, playing a role in virus replication. J Virol 85:8056–8068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chan CM, Chan C, Ma CK, Chan HB (2011) Norovirus as cause of benign convulsion associated with gastro-enteritis. J Paediatr Child Health 47:373–377

    Article  PubMed  Google Scholar 

  11. Chanit W, Thongprachum A, Khamrin P, Okitsu S, Mizuguchi M, Ushijima H (2009) Intergenogroup recombinant sapovirus in Japan, 2007–-2008. Emerg Infect is 15:1084–1087

    Article  Google Scholar 

  12. Chaudhry Y, Nayak A, Bordeleau M-E, Tanaka J, Pelletier J, Belsham GJ, Roberts LO, Goodfellow IG (2006) Caliciviruses differ in their functional requirements for eIF4F components. J Biol Chem 281:25315–25325

    Article  CAS  PubMed  Google Scholar 

  13. Clarke IN, Lambden PR (1997) The molecular biology of caliciviruses. J Gen Virol 78:291–301

    Article  CAS  PubMed  Google Scholar 

  14. Cunha JB, de Mendonca MCL, Miagostovich MP, Leite JPG (2010) Genetic diversity of porcine enteric caliciviruses in pigs raised in Rio de Janeiro State, Brazil. Arch Virol 155:1301–1305

    Article  CAS  PubMed  Google Scholar 

  15. Czako R, Atmar RL, Opekun AR, Gilger MA, Graham DY, Estes MK (2012) Serum hemagglutination inhibition activity correlates with protection from gastroenteritis in persons infected with Norwalk virus. Clin Vaccine Immunol 19:284–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. da Silva PT, Peiro JR, Mendes LC, Ludwig LF, de Oliveira-Filho EF, Bucardo F, Huynen P, Melin P, Thiry E, Mauroy A (2016) Human norovirus infection in Latin America. J Clin Virol 78:111–119

    Article  Google Scholar 

  17. Daughenbaugh KF, Fraser CS, Hershey JWB, Hardy ME (2003) The genome-linked protein VPg of the Norwalk virus binds eIF3, suggesting its role in translation initiation complex recruitment. EMBO J 22:2852–2859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Daughenbaugh KF, Wobus CE, Hardy ME (2006) VPg of murine norovirus binds translation initiation factors in infected cells. Virol J 3:33

    Article  PubMed  PubMed Central  Google Scholar 

  19. Farkas T, Sestak K, Wei C, Jiang X (2008) Characterization of a rhesus monkey calicivirus representing a new genus of Caliciviridae. J Virol 82:5408–5416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Furman LM, Maaty WS, Petersen LK, Ettayebi K, Hardy ME, Bothner B (2009) Cysteine protease activation and apoptosis in murine norovirus infection. Virol J 6:139

    Article  PubMed  PubMed Central  Google Scholar 

  21. Goodfellow I (2011) The genome-linked protein VPg of vertebrate viruses: a multifaceted protein. Curr Opin Virol 1:355–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goodfellow I, Chaudhry Y, Gioldasi I, Gerondopoulos A, Natoni A, Labrie L, Laliberte JF, Roberts L (2005) Calicivirus translation initiation requires an interaction between VPg and eIF4E. EMBO Rep 6:968–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Green KY, Ando T, Balayan MS, Berke T, Clarke IN, Estes MK, Matson DO, Nakata S, Neill JD, Studdert MJ, Thiel HJ (2000) Taxonomy of the caliciviruses. J Infect Dis 181(suppl 2):S322–S330

    Article  PubMed  Google Scholar 

  24. Gutierrez-Escolano AL (2014) Host-cell factors involved in the calicivirus replicative cycle. Future Virol 9:147–160

    Article  CAS  Google Scholar 

  25. Gutierrez-Escolano AL, Brito ZU, del Angel RM, Jiang X (2000) Interaction of cellular proteins with the 5 ' end of Norwalk virus genomic RNA. J Virol 74:8558–8562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gutierrez-Escolano AL, Vazquez-Ochoa M, Escobar-Herrera J, Hernandez-Acosta J (2003) La, PTB, and PAB proteins bind to the 3′ untranslated region of Norwalk virus genomic RNA. Biochem Biophys Res Commun 311:759–766

    Article  CAS  PubMed  Google Scholar 

  27. Herbert TP, Brierley I, Brown TDK (1997) Identification of a protein linked to the genomic and subgenomic mRNAs of feline calicivirus and its role in translation. J Gen Virol 78:1033–1040

    Article  CAS  PubMed  Google Scholar 

  28. Hernandez BA, Sandoval-Jaime C, Sosnovtsev SV, Green KY, Gutierrez-Escolano AL (2016) Nucleolin promotes in vitro translation of feline calicivirus genomic RNA. Virology 489:51–62

    Article  CAS  PubMed  Google Scholar 

  29. Herod MR, Salim O, Skilton RJ, Prince CA, Ward VK, Lambden PR, Clarke IN (2014) Expression of the murine norovirus (MNV) ORF1 polyprotein is sufficient to induce apoptosis in a virus-free cell model. PLoS One 9:e90679

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hyde JL, Sosnovtsev SV, Green KY, Wobus C, Virgin HW, Mackenzie JM (2009) Mouse norovirus replication is associated with virus-induced vesicle clusters originating from membranes derived from the secretory pathway. J Virol 83:9709–9719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jiang X, Matson DO, Velazquez FR, Calva JJ, Zhong WM, Hu J, Ruiz-Palacios GM, Pickering LK (1995) Study of Norwalk-related viruses in Mexican children. J Med Virol 47:309–316

    Article  CAS  PubMed  Google Scholar 

  32. Jiang X, Wang M, Graham DY, Estes MK (1992) Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. J Virol 66:6527–6532

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaiser WJ, Chaudhry Y, Sosnovtsev SV, Goodfellow IG (2006) Analysis of protein–protein interactions in the feline calicivirus replication complex. J Virol 87:363–368

    Article  CAS  Google Scholar 

  34. Karakasiliotis I, Vashist S, Bailey D, Abente EJ, Green KY, Roberts LO, Sosnovtsev SV, Goodfellow IG (2010) Polypyrimidine tract binding protein functions as a negative regulator of feline calicivirus translation. PLoS One 5:e9562

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kocher J, Yuan L (2015) Norovirus vaccines and potential antinorovirus drugs: recent advances and future perspectives. Future Virol 10:899–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. L’Homme Y, Sansregret R, Plante-Fortier E, Lamontagne AM, Ouardani M, Lacroix G, Simard C (2009) Genomic characterization of swine caliciviruses representing a new genus of Caliciviridae. Virus Genes 39:66–75

    Article  PubMed  Google Scholar 

  37. Laurent S, Vautherot JF, Madelaine MF, Legall G, Rasschaert D (1994) Recombinant rabbit hemorrhagic-disease virus capsid protein expressed in baculovirus self-assembles into virus-like particles and induces protection. J Virol 68:6794–6798

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Leite JPG, Ando T, Noel JS, Jiang B, Humphrey CD, Lew JF, Green KY, Glass RI, Monroe SS (1996) Characterization of Toronto virus capsid protein expressed in baculovirus. Arch Virol 141:865–875

    Article  CAS  PubMed  Google Scholar 

  39. Lindesmith LC, Ferris MT, Mullan CW, Ferreira J, Debbink K, Swanstrom J, Richardson C, Goodwin RR, Baehner F, Mendelman PM, Bargatze RF, Baric RS (2015) Broad blockade antibody responses in human volunteers after immunization with a multivalent norovirus VLP candidate vaccine: immunological analyses from a phase I clinical trial. PLoS Med 12:e1001807

    Article  PubMed  PubMed Central  Google Scholar 

  40. López-Manriquez E, Vashist S, Ueña L, Goodfellow I, Chavez P, Mora-Heredia JE, Cancio-Lonches C, Garrido E, Gutiérrez-Escolano AL (2013) Norovirus genome circularisation and efficient replication is facilitated by binding of PCBPs and hnRNP A1. J Virol 87:11371

    Article  PubMed  PubMed Central  Google Scholar 

  41. Marionneau S, Ruvoen N, Le Moullac-Vaidye B, Clement M, Cailleau-Thomas A, Ruiz-Palacois G, Huang P, Jiang X, Le Pendu J (2002) Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology 122:1967–1977

    Article  CAS  PubMed  Google Scholar 

  42. Martinez MA, Alcala AC, Carruyo G, Botero L, Liprandi F, Ludert JE (2006) Molecular detection of porcine enteric caliciviruses in Venezuelan farms. Vet Microbiol 116:77–84

    Article  CAS  PubMed  Google Scholar 

  43. Mathijs E, Stals A, Baert L, Botteldoorn N, Denayer S, Mauroy A, Scipioni A, Daube G, Dierick K, Herman L, Van Coillie E, Uyttendaele M, Thiry E (2012) A review of known and hypothetical transmission routes for noroviruses. Food Environ Virol 4:131–152

    Article  PubMed  Google Scholar 

  44. McFadden N, Bailey D, Carrara G, Benson A, Chaudhry Y, Shortland A, Heeney J, Yarovinsky F, Simmonds P, Macdonald A, Goodfellow I (2011) Norovirus regulation of the innate immune response and apoptosis occurs via the product of the alternative open reading frame 4. PLoS Pathog 7:e1002413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Natoni A, Kass GEN, Carter MJ, Roberts LO (2006) The mitochondrial pathway of apoptosis is triggered during feline calicivirus infection. J Gen Virol 87:357–361

    Article  CAS  PubMed  Google Scholar 

  46. Neill JD (1990) Nucleotide sequence of a region of the feline calicivirus genome which encodes picornavirus-like RNA-dependent RNA polymerase, cysteine protease and 2C polypeptides. Virus Res 17:145–160

    Article  CAS  PubMed  Google Scholar 

  47. O’Ryan M, Riera-Montes M, Lopman B (2016) Norovirus in Latin America: systematic review and meta-analysis. Pediatr Infect Dis J 36(2):127–134

    Article  Google Scholar 

  48. Oka T, Wang Q, Katayama K, Saif LJ (2015) Comprehensive review of human sapoviruses. Clin Microbiol Rev 28:32–53

    Article  PubMed  PubMed Central  Google Scholar 

  49. Patel MM, Hall AJ, Vinje J, Parashar UD (2009) Noroviruses: a comprehensive review. J Clin Virol 44:1–8

    Article  CAS  PubMed  Google Scholar 

  50. Payne DC, Vinje J, Szilagyi PG, Edwards KM, Staat MA, Weinberg GA, Hall CB, Chappell J, Bernstein DI, Curns AT, Wikswo M, Shirley SH, Hall AJ, Lopman B, Parashar UD (2013) Norovirus and medically attended gastroenteritis in U.S. children. N Engl J Med 368:1121–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pringle K, Lopman B, Vega E, Vinje J, Parashar UD, Hall AJ (2015) Noroviruses: epidemiology, immunity and prospects for prevention. Future Microbiol 10:53–67

    Article  CAS  PubMed  Google Scholar 

  52. Ramani S, Atmar RL, Estes MK (2014) Epidemiology of human noroviruses and updates on vaccine development. Curr Opin Gastroenterol 30:25–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ramani S, Neill FH, Opekun AR, Gilger MA, Graham DY, Estes MK, Atmar RL (2015) Mucosal and cellular immune responses to Norwalk virus. J Infect Dis 212:397–405

    Article  PubMed  PubMed Central  Google Scholar 

  54. Riddle MS, Walker RI (2016) Status of vaccine research and development for norovirus. Vaccine 34:2895–2899

    Article  CAS  PubMed  Google Scholar 

  55. Roberts LO, Al-Molawi N, Carter MJ, Kass GEN (2003) Apoptosis in cultured cells infected with feline calicivirus. Apoptosis: from signaling pathways to therapeutic tools. Ann NY Acad Sci 1010:587–590

    Article  CAS  PubMed  Google Scholar 

  56. Rohayem J, Robel I, Jager K, Scheffler U, Rudolph W (2006) Protein-primed and de novo initiation of RNA synthesis by norovirus 3Dpol. J Virol 80:7060–7069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sandoval-Jaime C, Gutierrez-Escolano AL (2009) Cellular proteins mediate 5′-3′ end contacts of Norwalk virus genomic RNA. Virology 387:322–330

    Article  CAS  PubMed  Google Scholar 

  58. Santi L, Batchelor L, Huang Z, Hjelm B, Kilbourne J, Arntzen CJ, Chen Q, Mason HS (2008) An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles. Vaccine 26:1846–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sarvestani ST, Cotton B, Fritzlar S, O’Donnell TB, Mackenzie JM (2016) Norovirus infection: replication, manipulation of host, and interaction with the host immune response. J Interferon Cytokine Res 36:215–225

    Article  CAS  PubMed  Google Scholar 

  60. Simmons K, Gambhir M, Leon J, Lopman B (2013) Duration of immunity to norovirus gastroenteritis. Emerg Infect Dis 19:1260–1267

    Article  PubMed  PubMed Central  Google Scholar 

  61. Smits SL, Rahman M, Schapendonk CM, van Leeuwen M, Faruque AS, Haagmans BL, Endtz HP, Osterhaus AD (2012) Calicivirus from novel recovirus genogroup in human diarrhea, Bangladesh. Emerg Infect Dis 18:1192–1195

    Article  PubMed  PubMed Central  Google Scholar 

  62. Smits SL, Rahman M, Schapendonk CME, van Leeuwen M, Faruque ASG, Haagmans BL, Endtz HP, Osterhaus ADME (2012) Calicivirus from novel recovirus genogroup in human diarrhea, Bangladesh. Emerg Infect Dis 18:1192–1195

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sosnovtsev SV (2010) Proteolytic cleavage and viral proteins. In: Xi JJ, Kim YG, Grant SH (eds) Caliciviruses, molecular and cellular virology, vol 1. Caister Academic, Norfolk

    Google Scholar 

  64. Sosnovtsev SV, Belliot G, Chang KO, Onwudiwe O, Green KY (2005) Feline calicivirus VP2 is essential for the production of infectious virions. J Virol 79:4012–4024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sosnovtsev SV, Belliot G, Chang KO, Prikhodko VG, Thackray LB, Wobus CE, Karst SM, Virgin HW, Green KY (2006) Cleavage map and proteolytic processing of the murine norovirus nonstructural polyprotein in infected cells. J Virol 80:7816–7831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sosnovtsev SV, Garfield M, Green KY (2002) Processing map and essential cleavage sites of the nonstructural polyprotein encoded by ORF1 of the feline calicivirus genome. J Virol 76:7060–7072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sosnovtsev SV, Prikhod'ko EA, Belliot G, Cohen JI, Green KY (2003) Feline calicivirus replication induces apoptosis in cultured cells. Virus Res 94:1–10

    Article  CAS  PubMed  Google Scholar 

  68. Stuart RL, Tan K, Mahar JE, Kirkwood CD, Andrew Ramsden C, Andrianopoulos N, Jolley D, Bawden K, Doherty R, Kotsanas D, Bradford J, Buttery JP (2010) An outbreak of necrotizing enterocolitis associated with norovirus genotype GII.3. Pediatr Infect Dis J 29:644–647

    Article  PubMed  Google Scholar 

  69. Subba-Reddy CV, Goodfellow I, Kao CC (2011) VPg-primed RNA synthesis of norovirus RNA-dependent RNA polymerases by using a novel cell-based assay. J Virol 85:13027–13037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sundararajan A, Sangster MY, Frey S, Atmar RL, Chen WH, Ferreira J, Bargatze R, Mendelman PM, Treanor JJ, Topham DJ (2015) Robust mucosal-homing antibody-secreting B cell responses induced by intramuscular administration of adjuvanted bivalent human norovirus-like particle vaccine. Vaccine 33:568–576

    Article  CAS  PubMed  Google Scholar 

  71. Tacket CO, Mason HS, Losonsky G, Estes MK, Levine MM, Arntzen CJ (2000) Human immune responses to a novel norwalk virus vaccine delivered in transgenic potatoes. J Infect Dis 182:302–305

    Article  CAS  PubMed  Google Scholar 

  72. Tamminen K, Lappalainen S, Huhti L, Vesikari T, Blazevic V (2013) Trivalent combination vaccine induces broad heterologous immune responses to norovirus and rotavirus in mice. PLoS One 8:e70409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tan M, Jiang X (2005) Norovirus and its histo-blood group antigen receptors: an answer to a historical puzzle. Trends Microbiol 13:285–293

    Article  CAS  PubMed  Google Scholar 

  74. Tan M, Jiang X (2012) Norovirus P particle: a subviral nanoparticle for vaccine development against norovirus, rotavirus and influenza virus. Nanomedicine (Lond) 7:889–897

    Article  CAS  Google Scholar 

  75. Tan M, Jiang X (2005) The p domain of norovirus capsid protein forms a subviral particle that binds to histo-blood group antigen receptors. J Virol 79:14017–14030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Thackray LB, Wobus CE, Chachu KA, Liu B, Alegre ER, Henderson KS, Kelley ST, Virgin HW 4th (2007) Murine noroviruses comprising a single genogroup exhibit biological diversity despite limited sequence divergence. J Virol 81:10460–10473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Treanor JJ, Atmar RL, Frey SE, Gormley R, Chen WH, Ferreira J, Goodwin R, Borkowski A, Clemens R, Mendelman PM (2014) A novel intramuscular bivalent norovirus virus-like particle vaccine candidate: reactogenicity, safety, and immunogenicity in a phase 1 trial in healthy adults. J Infect Dis 210:1763–1771

    Article  PubMed  Google Scholar 

  78. Vashist S, Urena L, Chaudhry Y, Goodfellow I (2012) Identification of RNA–protein interaction networks involved in the norovirus life cycle. J Virol 86:11977–11990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vashist S, Urena L, Gonzalez-Hernandez MB, Choi J, de Rougemont A, Rocha-Pereira J, Neyts J, Hwang S, Wobus CE, Goodfellow I (2015) Molecular chaperone Hsp90 is a therapeutic target for noroviruses. J Virol 89:6352–6363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wolf S, Reetz J, Otto P (2011) Genetic characterization of a novel calicivirus from a chicken. Arch Virol 156:1143–1150

    Article  CAS  PubMed  Google Scholar 

  81. Yunus MA, Lin X, Bailey D, Karakasiliotis I, Chaudhry Y, Vashist S, Zhang G, Thorne L, Kao CC, Goodfellow I (2015) The murine norovirus core subgenomic RNA promoter consists of a stable stem-loop that can direct accurate initiation of RNA synthesis. J Virol 89:1218–1229

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

CONACYT Proyecto Salud # 261257.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Lorena Gutierrez-Escolano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gutierrez-Escolano, A.L. (2017). Calicivirus Biology. In: Ludert, J., Pujol, F., Arbiza, J. (eds) Human Virology in Latin America. Springer, Cham. https://doi.org/10.1007/978-3-319-54567-7_3

Download citation

Publish with us

Policies and ethics