Skip to main content

Measles and Rubella in the Americas: The Path to Elimination

  • Chapter
  • First Online:

Abstract

Measles infection was almost universal in the population before vaccination. It caused an estimated 2.6 million deaths in 1980, before measles vaccine was used globally. Rubella, also known as German measles, is less infectious than measles and causes a common mild self-limiting illness of children and young adults. Rubella has particular public health importance because it is a teratogenic virus; infection in early pregnancy may have potentially devastating effects on the developing fetus, causing a number of anomalies known as congenital rubella syndrome (CRS). The live attenuated measles and rubella vaccines are highly effective and have been available since 1963 and 1969, respectively. Both have an excellent safety profile. In the early 1990s, several Latin American countries (LAC) developed effective control programs for measles. A range of strategies pioneered by Pan American Health Organization (PAHO) included combinations of high routine vaccine coverage and mass campaigns together with sensitive, case-based surveillance based on a capable diagnostic laboratory network. The range of approaches developed enabled LAC to interrupt measles and rubella transmission. Sustained elimination of rubella and measles circulation in the region were verified in 2015 and 2016, respectively. As measles and rubella continue to circulate in many regions of the world, maintaining good population vaccine coverage and surveillance to detect and respond to imported cases will be an important challenge for the Americas. The elimination of measles and rubella in the region over a substantial period is a historic achievement and serves as an example for other regions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abernathy ES, Hubschen JM, Muller CP et al (2011) Status of global virologic surveillance for rubella viruses. J Infect Dis 204(suppl 1):S524–S532

    Article  PubMed  Google Scholar 

  2. Andrus JK, De Quadros CA, Solorzano CC et al (2011) Measles and rubella eradication in the Americas. Vaccine 29(suppl 4):D91–D96

    Article  PubMed  Google Scholar 

  3. Artimos De Oliveira S, Bastos Camacho LA, Uzeda Barreto MC et al (2011) Serologic status of women in an urban population in Brazil before and after rubella immunization campaign using routine screening data. J Infect Dis 204(suppl 2):S664–S668

    Article  PubMed  Google Scholar 

  4. Artimos De Oliveira S, Jin L, Siqueira MM et al (2000) Atypical measles in a patient twice vaccinated against measles: transmission from an unvaccinated household contact. Vaccine 19:1093–1096

    Article  CAS  PubMed  Google Scholar 

  5. Badilla X, Morice A, Avila-Aguero ML et al (2007) Fetal risk associated with rubella vaccination during pregnancy. Pediatr Infect Dis J 26:830–835

    Article  PubMed  Google Scholar 

  6. Banatvala JE, Brown DW (2004) Rubella. Lancet 363:1127–1137

    Article  CAS  PubMed  Google Scholar 

  7. Baumeister E, Siqueira MM, Savy V et al (2000) Genetic characterization of wild-type measles viruses isolated during the 1998 measles epidemic in Argentina. Acta Virol 44:169–174

    CAS  PubMed  Google Scholar 

  8. Bellini WJ, Rota JS, Lowe LE et al (2005) Subacute sclerosing panencephalitis: more cases of this fatal disease are prevented by measles immunization than was previously recognized. J Infect Dis 192:1686–1693

    Article  PubMed  Google Scholar 

  9. Canepa E, Siqueira MM, Hortal M et al (2000) Recent measles viral activity in Uruguai: serological and genetic approaches. Acta Virol 44:35–39

    CAS  PubMed  Google Scholar 

  10. Castillo-Solorzano C, Carrasco P, Tambini G et al (2003) New horizons in the control of rubella and prevention of congenital rubella syndrome in the Americas. J Infect Dis 187(suppl 1):S146–S152

    Article  PubMed  Google Scholar 

  11. Castillo-Solorzano C, Marsigli C, Bravo-Alcantara P et al (2011) Elimination of rubella and congenital rubella syndrome in the Americas. J Infect Dis 204(suppl 2):S571–S578

    Article  PubMed  Google Scholar 

  12. Castillo-Solorzano C, Marsigli C, Danovaro-Holliday MC et al (2011) Measles and rubella elimination initiatives in the Americas: lessons learned and best practices. J Infect Dis 204(Suppl 1):S279–S283

    Article  PubMed  Google Scholar 

  13. Castillo-Solorzano C, Reef SE, Morice A et al (2011) Rubella vaccination of unknowingly pregnant women during mass campaigns for rubella and congenital rubella syndrome elimination, the Americas 2001–2008. J Infect Dis 204(suppl 2):S713–S717

    Article  PubMed  Google Scholar 

  14. Castillo-Solorzano CC, Matus CR, Flannery B et al (2011) The Americas: paving the road toward global measles eradication. J Infect Dis 204(suppl 1):S270–S278

    Article  Google Scholar 

  15. Castro-Silva R, Camacho LA, Amorim L et al (2003) Serological surveillance of measles in blood donors in Rio de Janeiro, Brazil. Rev Panam Salud Publica 14:334–340

    Article  PubMed  Google Scholar 

  16. Chen RT, Goldbaum GM, Wassilak SG et al (1989) An explosive point-source measles outbreak in a highly vaccinated population. Modes of transmission and risk factors for disease. Am J Epidemiol 129:173–182

    Article  CAS  PubMed  Google Scholar 

  17. Curti SP, Figueiredo CA, De Oliveira MI et al (2013) Molecular epidemiology of rubella viruses involved in congenital rubella infections in Sao Paulo, Brazil, between 1996 and 2009. J Med Virol 85:2034–2041

    Article  PubMed  Google Scholar 

  18. Cutts FT, Robertson SE, Diaz-Ortega JL et al (1997) Control of rubella and congenital rubella syndrome (CRS) in developing countries. Part 1: Burden of disease from CRS. Bull World Health Organ 75:55–68

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cutts FT, Vynnycky E (1999) Modelling the incidence of congenital rubella syndrome in developing countries. Int J Epidemiol 28:1176–1184

    Article  CAS  PubMed  Google Scholar 

  20. Da Silva E, Sa GR, Camacho LA, Stavola MS et al (2011) Pregnancy outcomes following rubella vaccination: a prospective study in the state of Rio de Janeiro, Brazil, 2001–2002. J Infect Dis 204(suppl 2):S722–S728

    Google Scholar 

  21. De Moraes JC, Toscano CM, De Barros EN et al (2011) Etiologies of rash and fever illnesses in Campinas, Brazil. J Infect Dis 204(suppl 2):S627–S636

    Article  PubMed  Google Scholar 

  22. De Quadros CA, Andrus JK, Danovaro-Holliday MC et al (2008) Feasibility of global measles eradication after interruption of transmission in the Americas. Expert Rev Vaccines 7:355–362

    Article  PubMed  Google Scholar 

  23. De Quadros CA, Izurieta H, Carrasco P et al (2003) Progress toward measles eradication in the region of the Americas. J Infect Dis 187(suppl 1):S102–S110

    Article  PubMed  Google Scholar 

  24. De Quadros CA, Olive JM, Hersh BS et al (1996) Measles elimination in the Americas. Evolving strategies. JAMA 275:224–229

    PubMed  Google Scholar 

  25. De Swart RL, Yuksel S, Langerijs CN et al (2009) Depletion of measles virus glycoprotein-specific antibodies from human sera reveals genotype-specific neutralizing antibodies. J Gen Virol 90:2982–2989

    Article  PubMed  Google Scholar 

  26. De Swart RL, Yuksel S, Osterhaus AD (2005) Relative contributions of measles virus hemagglutinin- and fusion protein-specific serum antibodies to virus neutralization. J Virol 79:11547–11551

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dias Leite R, Naaman Berezin E (2015) Measles in Latin America: current situation. J Pediatric Infect Dis Soc 4:179–181

    Article  PubMed  Google Scholar 

  28. Donadio FF, Siqueira MM, Vyse A et al (2003) The genomic analysis of rubella virus detected from outbreak and sporadic cases in Rio de Janeiro state, Brazil. J Clin Virol 27:205–209

    Article  CAS  PubMed  Google Scholar 

  29. Enders G, Nickerl-Pacher U, Miller E et al (1988) Outcome of confirmed periconceptional maternal rubella. Lancet 1:1445–1447

    Article  CAS  PubMed  Google Scholar 

  30. Flores A, Villeda JA, Rodriguez-Fernandez R et al (2011) Advocacy and resource mobilization for rubella elimination in Guatemala. J Infect Dis 204(suppl 2):S598–S602

    Article  PubMed  Google Scholar 

  31. Galindo MA, Santin M, Resik S et al (1998) Eradication of measles in Cuba. Rev Panam Salud Publica 4:171–177

    Article  CAS  PubMed  Google Scholar 

  32. Gallegos D, Olea A, Sotomayor V et al (2011) Rubella outbreaks following virus importations: the experience of Chile. J Infect Dis 204(suppl 2):S669–S674

    Article  PubMed  Google Scholar 

  33. Gardy JL, Naus M, Amlani A et al (2015) Whole-genome sequencing of measles virus genotypes H1 and D8 during outbreaks of infection following the 2010 Olympic Winter Games reveals viral transmission routes. J Infect Dis 212:1574–1578

    Article  PubMed  Google Scholar 

  34. Grant GB, Reef SE, Dabbagh A et al (2015) Global progress toward rubella and congenital rubella syndrome control and elimination: 2000–2014. MMWR Morb Mortal Wkly Rep 64:1052–1055

    Article  PubMed  Google Scholar 

  35. Griffin DE (2013) Measles virus. In: Knipe DM, Howley PM (eds) Fields virology. Wolters Kluwer/Lippincott Williams & Wilkins Health, Philadelphia, pp 1042–1069

    Google Scholar 

  36. Henao-Restrepo AM, Strebel P, John Hoekstra E et al (2003) Experience in global measles control, 1990–2001. J Infect Dis 187(suppl 1):S15–S21

    Article  PubMed  Google Scholar 

  37. Hersh BS, Tambini G, Nogueira AC et al (2000) Review of regional measles surveillance data in the Americas, 1996-99. Lancet 355:1943–1948

    Article  CAS  PubMed  Google Scholar 

  38. Hickman CJ, Hyde TB, Sowers SB et al (2011) Laboratory characterization of measles virus infection in previously vaccinated and unvaccinated individuals. J Infect Dis 204(suppl 1):S549–S558

    Article  PubMed  Google Scholar 

  39. Hobman TC (2013) Rubella virus. In: Knipe DM, Howley PM (eds) Fields virology. Wolters Kluwer/Lippincott Williams & Wilkins Health, Philadelphia, pp 687–711

    Google Scholar 

  40. Icenogle JP, Siqueira MM, Abernathy ES et al (2011) Virologic surveillance for wild-type rubella viruses in the Americas. J Infect Dis 204(suppl 2):S647–S651

    Article  PubMed  Google Scholar 

  41. Irons B, Dobbins JG, Caribbean Vaccine M (2011) The Caribbean experience in maintaining high measles vaccine coverage. J Infect Dis 204(suppl 1):S284–S288

    Article  PubMed  Google Scholar 

  42. Jimenez G, Avila-Aguero ML, Morice A et al (2007) Estimating the burden of congenital rubella syndrome in Costa Rica, 1996–2001. Pediatr Infect Dis J 26:382–386

    Article  PubMed  Google Scholar 

  43. Lambert N, Strebel P, Orenstein W et al (2015) Rubella. Lancet 385:2297–2307

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lanzieri TM, Segatto TC, Siqueira MM et al (2003) Burden of congenital rubella syndrome after a community-wide rubella outbreak, Rio Branco, Acre, Brazil, 2000 to 2001. Pediatr Infect Dis J 22:323–329

    PubMed  Google Scholar 

  45. Leite RD, Barreto JL, Sousa AQ (2015) Measles reemergence in Ceara, Northeast Brazil, 15 years after elimination. Emerg Infect Dis 21:1681–1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Martinez-Quintana E, Castillo-Solorzano C, Torner N et al (2015) Congenital rubella syndrome: a matter of concern. Rev Panam Salud Publica 37:179–186

    PubMed  Google Scholar 

  47. Menegolla IA, Bercini MA, Schermann MT et al (2011) Outbreak of rubella after mass vaccination of children and adult women: challenges for rubella elimination strategies. Rev Panam Salud Publica 29:243–251

    Article  PubMed  Google Scholar 

  48. Miller E, Cradock-Watson JE, Pollock TM (1982) Consequences of confirmed maternal rubella at successive stages of pregnancy. Lancet 2:781–784

    Article  CAS  PubMed  Google Scholar 

  49. Morice A, Avila-Aguero ML, Salas-Peraza D et al (2011) Approach to verify the status of measles, rubella, and congenital rubella syndrome elimination in Costa Rica. J Infect Dis 204(suppl 2):S690–S697

    Article  PubMed  Google Scholar 

  50. Moss WJ, Strebel P (2011) Biological feasibility of measles eradication. J Infect Dis 204(suppl 1):S47–S53

    Article  PubMed  PubMed Central  Google Scholar 

  51. Oliveira SA, Siqueira MM, Camacho LA et al (2003) Use of RT-PCR on oral fluid samples to assist the identification of measles cases during an outbreak. Epidemiol Infect 130:101–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Oliveira SA, Siqueira MM, Camacho LA et al (2001) The aetiology of maculopapular rash diseases in Niteroi, State of Rio de Janeiro, Brazil: implications for measles surveillance. Epidemiol Infect 127:509–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Oliveira SA, Siqueira MM, Mann GF et al (1996) Measles antibody prevalence after mass immunization campaign in Niteroi, state of Rio de Janeiro, Brazil. Rev Inst Med Trop Sao Paulo 38:355–358

    Article  CAS  PubMed  Google Scholar 

  54. Pan American Health Organization (2016) Impact of measles and rubella elimination strategies: the Americas, 1980–2016. PAHO, oral presentation by Dr Gloria Rey. Reprinted with the permission of the Pan American Health Organization

    Google Scholar 

  55. Pan American Health Organization (1979) Measles in the region of the Americas, 1971–1978. EPI Newsl 1(3):4–5

    Google Scholar 

  56. Pan American Health Organization (2011) Plan of action: recommendation for documentation and verification of measles, rubella and congenital rubella syndrome elimination in the Americas. PAHO, Washington, DC

    Google Scholar 

  57. Pan American Health Organization (1998) Update: Sao Paulo measles outbreak. EPI Newsl 20:5–6

    Google Scholar 

  58. Patel MK, Gacic-Dobo M, Strebel P et al (2016) Progress towards regional measles elimination worldwide, 2000–2015. Morb Mortal Wkly Rep (MMWR) 65:1228–1233

    Article  Google Scholar 

  59. Plotkin SA (1999) Rubella. In: Plotkin SA, Orenstein WA (eds) Vaccines. Saunders, Philadelphia, pp 409–440

    Google Scholar 

  60. Prevots DR, Parise MS, Segatto TC et al (2003) Interruption of measles transmission in Brazil, 2000–2001. J Infect Dis 187(suppl 1):S111–S120

    Article  PubMed  Google Scholar 

  61. Quiroga R, Barrezueta O, Venczel L et al (2003) Interruption of indigenous measles transmission in Bolivia since October 2000. J Infect Dis 187(suppl 1):S121–S126

    Article  PubMed  Google Scholar 

  62. Robertson SE, Featherstone DA, Gacic-Dobo M et al (2003) Rubella and congenital rubella syndrome: global update. Rev Panam Salud Publica 14:306–315

    Article  PubMed  Google Scholar 

  63. Rota J, Lowe L, Rota P et al (2006) Identical genotype B3 sequences from measles patients in 4 countries, 2005. Emerg Infect Dis 12:1779–1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rota PA, Brown K, Mankertz A et al (2011) Global distribution of measles genotypes and measles molecular epidemiology. J Infect Dis 204(suppl 1):S514–S523

    Article  PubMed  Google Scholar 

  65. Rota PA, Moss WJ, Takeda M et al (2016) Measles. Nat Rev Dis Primers 2:1–16

    Article  Google Scholar 

  66. Santos JI, Nakamura MA, Godoy MV et al (2004) Measles in Mexico, 1941–2001: interruption of endemic transmission and lessons learned. J Infect Dis 189(Suppl 1):S243–S250

    Article  PubMed  Google Scholar 

  67. Sarmiento H, Cobo OB, Morice A et al (2011) Measles outbreak in Venezuela: a new challenge to postelimination surveillance and control? J Infect Dis 204(suppl 2):S675–S682

    Article  PubMed  Google Scholar 

  68. Siqueira MM, Castro-Silva R, Cruz C et al (2001) Genomic characterization of wild-type measles viruses that circulated in different states in Brazil during the 1997 measles epidemic. J Med Virol 63:299–304

    Article  CAS  PubMed  Google Scholar 

  69. Soares RC, Siqueira MM, Toscano CM et al (2011) Follow-up study of unknowingly pregnant women vaccinated against rubella in Brazil, 2001–2002. J Infect Dis 204(suppl 2):S729–S736

    Article  PubMed  Google Scholar 

  70. Sowers SB, Rota JS, Hickman CJ et al (2016) High concentrations of measles neutralizing antibodies and high-avidity measles IgG accurately identify measles reinfection cases. Clin Vaccine Immunol 23:707–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stein CE, Birmingham M, Kurian M et al (2003) The global burden of measles in the year 2000: a model that uses country-specific indicators. J Infect Dis 187(suppl 1):S8–14

    Article  PubMed  Google Scholar 

  72. Strebel PM, Cochi SL, Hoekstra E et al (2011) A world without measles. J Infect Dis 204(suppl 1):S1–S3

    Article  PubMed  Google Scholar 

  73. Strebel PM, Henao-Restrepo AM, Hoekstra E et al (2004) Global measles elimination efforts: the significance of measles elimination in the United States. J Infect Dis 189(suppl 1):S251–S257

    Article  PubMed  Google Scholar 

  74. Suarez-Ognio L, Adrianzen A, Ortiz A et al (2007) A rubella serosurvey in postpartum women in the three regions of Peru. Rev Panam Salud Publica 22:110–117

    Article  PubMed  Google Scholar 

  75. Tahara M, Burckert JP, Kanou K et al (2016) Measles virus hemagglutinin protein epitopes: the basis of antigenic stability. Viruses 8:216–230

    Article  PubMed Central  Google Scholar 

  76. United Nations Children’s Fund (1990) Plan of action for implementing the world declaration on the survival, protection and development of children in the 1990s. UNICEF, New York. https://www.unicef.org/wsc/plan.htm

    Google Scholar 

  77. Venczel L, Rota J, Dietz V et al (2003) The measles laboratory network in the region of the Americas. J Infect Dis 187(suppl 1):S140–S145

    Article  PubMed  Google Scholar 

  78. Vianna RA, De Oliveira SA, Camacho LA et al (2008) Role of human herpesvirus 6 infection in young Brazilian children with rash illnesses. Pediatr Infect Dis J 27:533–537

    Article  PubMed  Google Scholar 

  79. Vynnycky E, Adams EJ, Cutts FT et al (2016) Using seroprevalence and immunisation coverage data to estimate the global burden of congenital rubella syndrome, 1996–2010: a systematic review. PLoS One 11:e0149160

    Article  PubMed  PubMed Central  Google Scholar 

  80. World Health Organization (2016) Countries with rubella vaccine in the national immunization programme and planned introductions in 2016–2017. In: Vaccine introduction slides. http://www.who.int/immunization/monitoring_surveillance/burden/en/

  81. World Health Organization (2007) Manual for the diagnosis of measles and rubella infection. WHO, Geneva

    Google Scholar 

  82. World Health Organization (2012) Measles virus nomenclature update: 2012. Wkly Epidemiol Rec 87:73–81

    Google Scholar 

  83. World Health Organization (2004) Progress towards measles elimination, Western Hemisphere, 2002–2003. Wkly Epidemiol Rec 79:149–151

    Google Scholar 

  84. World Health Organization (2011) Rubella vaccines: WHO position paper. Wkly Epidemiol Rec 86:301–316

    Google Scholar 

  85. World Health Organization (2013) Rubella virus nomenclature update: 2013. Wkly Epidemiol Rec 88:337–343

    Google Scholar 

  86. World Health Organization (1989) World Health Assembly (1989) Executive summary resolution WHA42.32. WHO, Geneva

    Google Scholar 

  87. World Health Organization and UNICEF (2002) WHO-UNICEF joint statement on strategies to reduce measles mortality worldwide. Wkly Epidemiol Rec 77:224–228

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilda Mendonça Siqueira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Siqueira, M.M., Brown, D.W.G. (2017). Measles and Rubella in the Americas: The Path to Elimination. In: Ludert, J., Pujol, F., Arbiza, J. (eds) Human Virology in Latin America. Springer, Cham. https://doi.org/10.1007/978-3-319-54567-7_15

Download citation

Publish with us

Policies and ethics