Skip to main content

The Role of Agrobacterium-Mediated and Other Gene-Transfer Technologies in Cannabis Research and Product Development

  • Chapter
  • First Online:

Abstract

Cannabis sativa is a multi-use crop valued for its pharmacological properties and as a fibre and seed crop. Biotechnological applications toward Cannabis research and product development are still in their early stages. An important feature of biotechnology is the collection of gene transfer technologies that are used to introduce genetic material into host organisms. Agrobacterium tumefaciens and A. rhizogenes represent the most common vectors to transfer genetic material into plant cells. Stable and transient gene expression can be achieved using A. tumefaciens while A. rhizogenes generates stable transformed hairy roots. Cannabis is amenable to genetic transformation using both Agrobacterium vectors, however the plant is recalcitrant to regeneration, impeding the recovery of transgenic Cannabis plants. Despite this shortcoming, the cannabinoid pathway is currently attracting considerable attention from the biotechnology community. Gene transfer technologies have assisted with the characterization of the cannabinoid pathway leading to the synthesis of THCA, the psychoactive compound that is highly valued as a therapeutic. Elucidation of the cannabinoid pathway has led to its metabolic engineering in heterologous hosts. The yeast Pichia pastoris has proven to be a particularly suitable host for the production of cannabinoids. Recently, biotechnology companies have emerged that anticipate commercializing cannabinoid-based drugs in yeast and tobacco and to produce hemp cultivars with the cannabinoid pathway down-regulated or completely knocked out.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98:5301–5317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad R, Tehsin Z, Malik ST, Asad SA, Shahzad M, Bilal M, Shah MM, Khan SA (2016) Phytoremediation potential of hemp (Cannabis sativa L.): identification and characterization of heavy metals responsive genes. Clean Soil Air Water 44:195–201

    Article  CAS  Google Scholar 

  • Ajikumar PK, Xiao W-H, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330:70–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altpeter F, Springer NM, Bartley LE, Blechl A, Brutnell TP, Citovsky V, Conrad L, Gelvin SB, Jackson D, Kausch AP, Lemaux PG, Medford JI, Orozo-Cardenas M, Tricoli D, VanEck J, Voytas DF, Walbot V, Wang K, Zhang ZJ, Stewart CN (2016) Advancing crop transformation in the era of genome editing. Plant Cell 28:1510–1520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andre CM, Hausman JF, Guerriero G (2016) Cannabis sativa: the plant of the thousand and one molecules. Frontiers Plant Sci 7:19

    Article  Google Scholar 

  • Baghaei B, Skrifvars M, Salehi M, Bashir T, Rissanen M, Nousiainen P (2014) Novel aligned hemp fibre reinforcement for structural biocomposites: porosity, water absorption, mechanical performances and viscoelastic behaviour. Compos A 61:1–12

    Article  CAS  Google Scholar 

  • Baker D, Pryce G, Giovannoni G, Thompson AJ (2003) The therapeutic potential of cannabis. Lancet Neurol 2:291–298

    Article  CAS  PubMed  Google Scholar 

  • Bell J (2016) Marijuana compounds brewed using yeast by Canadian biotech firms. CBC News. Retrieved from http://www.cbc.ca/news/technology/medical-marijuana-yeast-1.3527950

  • Bifulco M, Pisanti S (2015) Medicinal use of cannabis in Europe: the fact that more countries legalize the medicinal use of cannabis should not become an argument for unfettered and uncontrolled use. EMBO Rep 16:130–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13:42–51

    Article  CAS  PubMed  Google Scholar 

  • Bock R (2010) The give-and-take of DNA: horizontal gene transfer in plants. Trends Plant Sci 15:11–22

    Article  CAS  PubMed  Google Scholar 

  • Bolognini D, Costa B, Maione S, Comelli F, Marini P, Di Marzo V, Parolaro D, Ross RA, Gauson LA, Cascio MG, Pertwee RG (2010) The plant cannabinoid Δ9-tetrahydrocannabivarin can decrease signs of inflammation and inflammatory pain in mice. Br J Pharmacol 160:677–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrelli F, Fasolino I, Romano B, Capasso R, Maiello F, Coppola D, Orlando P, Battista G, Pagano E, Di Marzo V, Izzo AA (2013) Beneficial effect of the non-psychotropic plant cannabinoid cannabigerol on experimental inflammatory bowel disease. Biochem Pharmacol 85:1306–1316

    Article  CAS  PubMed  Google Scholar 

  • Brockstein A (2016) Biosynthesis could radically change the Cannabis industry. New Cannabis Ventures. Retrieved from https://www.newcannabisventures.com/biosynthesis-could-radically-change-the-cannabis-industry/

  • Callaway JC (2004) Hempseed as a nutritional resource: an overview. Euphytica 140:65–72

    Article  Google Scholar 

  • Campbell S, Paquin D, Awaya JD, Li QX (2002) Remediation of benzo[a]pyrene and chrysene-contaminated soil with industrial hemp (Cannabis sativa). Int J Phytoremediat 4:157–168

    Article  CAS  Google Scholar 

  • Carus M, Karst S, Kauffmann A, Hobson J, Bertucelli S (2013) The European hemp industry: cultivation, processing and applications for fibres, shivs and seeds. European Industrial Hemp Association, Hürth, Germany, pp 1–9. Retrieved from http://eiha.org/media/2014/10/13-06-European-Hemp-Industry.pdf

  • Chattopadhyay T, Roy S, Mitra A, Maiti MK (2011) Development of a transgenic hairy root system in jute (Corchorus capsularis L.) with gusA reporter gene through Agrobacterium rhizogenes mediated co-transformation. Plant Cell Rep 30:485–493

    Article  CAS  PubMed  Google Scholar 

  • Chilton M-D (2001) Agrobacterium. A memoir. Plant Physiol 125:9–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chilton M-D, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271

    Article  CAS  PubMed  Google Scholar 

  • Chilton M-D, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempe J (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295:432–434

    Article  CAS  Google Scholar 

  • Conley AJ, Zhu H, Le LC, Jevnikar AM, Lee BH, Brandle JE, Menassa R (2011) Recombinant protein production in a variety of Nicotiana hosts: a comparative analysis. Plant Biotechnol J 9:434–444

    Article  CAS  PubMed  Google Scholar 

  • Crew BEC (2015) Scientists engineer yeast to produce active marijuana compound, THC. Science Alert. Retrieved from http://www.sciencealert.com/scientists-engineer-yeast-to-produce-active-marijuana-compound-thc

  • Cui H, Zhang S-T, Yang H-J, Ji H, Wang X-J (2011) Gene expression profile analysis of tobacco leaf trichomes. BMC Plant Biol 11:1–10

    Article  CAS  Google Scholar 

  • Das A, Chaudhury S, Kalita MC, Mondal TK (2015) In silico identification, characterization and expression analysis of miRNAs in Cannabis sativa L. Plant Gene 2:17–24

    Article  CAS  Google Scholar 

  • Day RN, Davidson MW (2009) The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev 38:2887–2921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devinsky O, Cilio MR, Cross H, Fernandez-Ruiz J, French J, Hill C, Katz R, Di Marzo V, Jutras-Aswad D, Notcutt WG, Martinez-Orgado J, Robson PJ, Rohrback BG, Thiele E, Whalley B, Friedman D (2014) Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia 55:791–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong J-Z, McHughen A (1993) Transgenic flax plants from Agrobacterium mediated transformation: incidence of chimeric regenerants and inheritance of transgenic plants. Plant Sci 91:139–148

    Article  CAS  Google Scholar 

  • Ebskamp MJ (2002) Engineering flax and hemp for an alternative to cotton. Trends Biotechnol 20:229–230

    Article  CAS  PubMed  Google Scholar 

  • Elsohly MA, Slade D (2005) Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci 78:539–548

    Article  CAS  PubMed  Google Scholar 

  • Escobar MA, Dandekar AM (2003) Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci 8:380–386

    Article  CAS  PubMed  Google Scholar 

  • Feeney M, Punja ZK (2003) Tissue culture and Agrobacterium-mediated transformation of hemp (Cannabis sativa L.). In Vitro Cell Dev Biol Plant 39:578–585

    Article  CAS  Google Scholar 

  • Feeney M, Punja ZK (2015) Hemp (Cannabis sativa L.). Meth Mol Biol 1224:319–329

    Article  CAS  Google Scholar 

  • Fisse J, Braut F, Cosson L, Paris M (1981) Étude in vitro des capacités organogénétiques de tissus de Cannabis sativa L.; effet de différentes substances de croissance. Pl Méd Phytoth 15:217–223

    CAS  Google Scholar 

  • Gagne SJ, Stout JM, Liu E, Boubakir Z, Clark SM, Page JE (2012) Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. Proc Nat Acad Sci 109:12811–12816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galasso I, Russo R, Mapelli S, Ponzoni E, Brambilla IM, Battelli G, Reggiani R (2016) Variability in seed traits in a collection of Cannabis sativa L. genotypes. Frontiers Plant Sci 7:688

    Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelvin SB (2012) Traversing the cell: Agrobacterium T-DNA’s journey to the host genome. Frontiers Plant Sci 3:52

    Article  Google Scholar 

  • Gertsch J, Pertwee RG, Di Marzo V (2010) Phytocannabinoids beyond the Cannabis plant—do they exist? Br J Pharmacol 160:523–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-García S, Hospido A, Feijoo G, Moreira MT (2010) Life cycle assessment of raw materials for non-wood pulp mills: hemp and flax. Resour Conserv Recy 54:923–930

    Article  Google Scholar 

  • Haag A (2016) 22nd Century launches major new initiative to produce medically-important marijuana cannabinoids. Business Wire. Retrieved from http://www.businesswire.com/news/home/20160512005770/en/

  • Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends Plant Sci 4:226–231

    Article  CAS  PubMed  Google Scholar 

  • Happyana N, Agnolet S, Muntendam R, Van Dam A, Schneider B, Kayser O (2013) Analysis of cannabinoids in laser-microdissected trichomes of medicinal Cannabis sativa using LCMS and cryogenic NMR. Phytochemistry 87:51–59

    Article  CAS  PubMed  Google Scholar 

  • Hellens R, Mullineaux P, Klee H (2000) Technical focus: a guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446–451

    Article  CAS  PubMed  Google Scholar 

  • Hemphill JK, Turner JC, Mahlberg PG (1978) Studies on growth and cannabinoid composition of callus derived from different strains of Cannabis sativa. Lloydia 41:453–462

    CAS  Google Scholar 

  • Hill AJ, Williams CM, Whalley BJ, Stephens GJ (2012) Phytocannabinoids as novel therapeutic agents in CNS disorders. Pharmacol Therapeut 133:79–97

    Article  CAS  Google Scholar 

  • Hodgkins K (2015) Scientists genetically engineer yeast to make THC and other medical marijuana chemicals. Digital Trends. Retrieved from http://www.digitaltrends.com/cool-tech/thc-yeast-medical-marijuana/

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Hofmann ME, Frazier CJ (2013) Marijuana, endocannabinoids, and epilepsy: potential and challenges for improved therapeutic intervention. Exp Neurol 244:43–50

    Article  CAS  PubMed  Google Scholar 

  • Joensuu JJ, Conley AJ, Lienemann M, Brandle JE, Linder MB, Menassa R (2010) Hydrophobin fusions for high-level transient protein expression and purification in Nicotiana benthamiana. Plant Physiol 152:622–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones NA, Glyn SE, Akiyama S, Hill TD, Hill AJ, Weston SE, Burnett MD, Yamasaki Y, Stephens GJ, Whalley BJ, Williams CM (2012) Cannabidiol exerts anti-convulsant effects in animal models of temporal lobe and partial seizures. Seizure 21:344–352

    Article  PubMed  Google Scholar 

  • Kapila J, De Rycke R, Van Montagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    Article  CAS  Google Scholar 

  • Khamsi R (2015) Newly risen from yeast: THC. The New York Times. Retrieved from http://www.nytimes.com/2015/09/15/science/newly-risen-from-yeast-thc.html

  • Kim JT, Netravali AN (2011) Development of aligned-hemp yarn-reinforced green composites with soy protein resin: effect of pH on mechanical and interfacial properties. Compos Sci Technol 71:541–547

    Article  CAS  Google Scholar 

  • Kost TA, Condreay JP, Jarvis DL (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 23:567–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyndt T, Quispe D, Zhai H, Jarret R, Ghislain M, Liu Q, Gheysen G, Kreuze JF (2015) The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. Proc Nat Acad Sci 112:5844–5849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laate EA (2012) Industrial hemp production in Canada. Retrieved from the Government of Alberta, Agriculture and Rural Development Department website: http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/econ9631

  • Lange BM, Turner GW (2013) Terpenoid biosynthesis in trichomes—current status and future opportunities. Plant Biotechnol J 11:2–22

    Article  CAS  PubMed  Google Scholar 

  • Lata H, Chandra S, Khan I, ElSohly MA (2009) Thidiazuron-induced high-frequency direct shoot organogenesis of Cannabis sativa L. In Vitro Cell Dev Biol Plant 45:12–19

    Article  CAS  Google Scholar 

  • Lata H, Chandra S, Khan IA, Elsohly MA (2010) High frequency plant regeneration from leaf derived callus of high Δ9-tetrahydrocannabinol yielding Cannabis sativa L. Planta Med 76:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Lebrun G, Couture A, Laperrière L (2013) Tensile and impregnation behavior of unidirectional hemp/paper/epoxy and flax/paper/epoxy composites. Compos Struct 103:151–160

    Article  Google Scholar 

  • Lim CG, Fowler ZL, Hueller T, Schaffer S, Koffas MA (2011) High-yield resveratrol production in engineered Escherichia coli. Appl Environ Microbiol 77:3451–3460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linger P, Müssig J, Fischer H, Kobert J (2002) Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential. Ind Crop Prod 16:33–42

    Article  CAS  Google Scholar 

  • MacKinnon L, Mc Dougall G, Aziz N, Millam S (2000) Progress towards transformation of fibre hemp. Scottish Crop Research Institute Annual Report 2000/2001. Scottish Crop Research Institute, Invergowrie, Dundee, pp 84–86

    Google Scholar 

  • Mahlberg PG, Kim ES (2004) Accumulation of cannabinoids in glandular trichomes of Cannabis (Cannabaceae). J Ind Hemp 9:15–36

    Article  CAS  Google Scholar 

  • Marks MD, Tian L, Wenger JP, Omburo SN, Soto-Fuentes W, He J, Gang DR, Weiblen GD, Dixon RA (2009) Identification of candidate genes affecting Δ9-tetrahydrocannabinol biosynthesis in Cannabis sativa. J Exp Bot 60:3715–3726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathur A, Gangwar A, Mathur AK, Verma P, Uniyal GC, Lal RK (2010) Growth kinetics and ginsenosides production in transformed hairy roots of American ginseng—Panax quinquefolium L. Biotechnol Lett 32:457–461

    Article  CAS  PubMed  Google Scholar 

  • Matveeva TV, Lutova LA (2014) Horizontal gene transfer from Agrobacterium to plants. Frontiers Plant Sci 5:326

    Article  Google Scholar 

  • Menassa R, Zhu H, Karatzas CN, Lazaris A, Richman A, Brandle J (2004) Spider dragline silk proteins in transgenic tobacco leaves: accumulation and field production. Plant Biotechnol J 2:431–438

    Article  CAS  PubMed  Google Scholar 

  • Miyawaki A (2011) Proteins on the move: insights gained from fluorescent protein technologies. Nat Rev Mol Cell Biol 12:656–668

    Article  CAS  PubMed  Google Scholar 

  • Moore L, Warren G, Strobel G (1979) Involvement of a plasmid in the hairy root disease of plants caused by Agrobacterium rhizogenes. Plasmid 2:617–626

    Article  CAS  PubMed  Google Scholar 

  • O’Keefe BR, Vojdani F, Buffa V, Shattock RJ, Montefiori DC, Bakke J, Mirsalis J, d’Andrea AL, Hume SD, Bratcher B, Saucedo CJ, McMahon JB, Pogue GP, Palmer KE (2009) Scaleable manufacture of HIV-1 entry inhibitor griffithsin and validation of its safety and efficacy as a topical microbicide component. Proc Nat Acad Sci 106:6099–6104

    Article  PubMed  PubMed Central  Google Scholar 

  • Oksman-Caldentey KM, Inze D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9:433–440

    Article  CAS  PubMed  Google Scholar 

  • Ono NN, Tian L (2011) The multiplicity of hairy root cultures: prolific possibilities. Plant Sci 180:439–446

    Article  CAS  PubMed  Google Scholar 

  • Păcurar DI, Thordal-Christensen H, Păcurar ML, Pamfil D, Botez C, Bellini C (2011) Agrobacterium tumefaciens: from crown gall tumors to genetic transformation. Physiol Mol Plant Path 76:76–81

    Article  Google Scholar 

  • Pertwee RG (2004) Pharmacological and therapeutic targets for Δ9-tetrahydrocannabinol and cannabidiol. Euphytica 140:73–82

    Article  CAS  Google Scholar 

  • Raboy V (2007) The ABCs of low-phytate crops. Nat Biotechnol 25:874–875

    Article  CAS  PubMed  Google Scholar 

  • Raharjo TJ, Chang WT, Verberne MC, Peltenburg-Looman AM, Linthorst HJ, Verpoorte R (2004) Cloning and over-expression of a cDNA encoding a polyketide synthase from Cannabis sativa. Plant Physiol Biochem 42:291–297

    Article  CAS  PubMed  Google Scholar 

  • Ranalli P, Venturi G (2004) Hemp as a raw material for industrial applications. Euphytica 140:1–6

    Article  Google Scholar 

  • Rehm J, Fischer B (2015) Cannabis legalization with strict regulation, the overall superior policy option for public health. Clin Pharmacol Ther 97:541–544

    Article  CAS  PubMed  Google Scholar 

  • Richez-Dumanois C, Braut-Boucher F, Cosson L, Paris M (1986) Multiplication végétative in vitro du chanvre (Cannabis sativa L.). Application à la conservation des clones sélectionnés. Agronomie 6:487–495

    Article  Google Scholar 

  • Ron M, Kajala K, Pauluzzi G, Wang D, Reynoso MA, Zumstein K, Garcha J, Winte S, Masson H, Inagaki S, Federici F, Sinha N, Deal RB, Bailey-Serres J, Brady SM (2014) Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol 166:455–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salentijn EMJ, Zhang Q, Amaducci S, Yang M, Trindade LM (2015) New developments in fiber hemp (Cannabis sativa L.) breeding. Ind Crop Prod 68:32–41

    Article  Google Scholar 

  • Shahzad A (2012) Hemp fiber and its composites—a review. J Compos Mater 46:973–986

    Article  CAS  Google Scholar 

  • Shi J, Wang H, Schellin K, Li B, Faller M, Stoop JM, Meeley RB, Ertl DS, Ranch JP, Glassman K (2007) Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotechnol 25:930–937

    Article  CAS  PubMed  Google Scholar 

  • Shi G, Liu C, Cui M, Ma Y, Cai Q (2012) Cadmium tolerance and bioaccumulation of 18 hemp accessions. Appl Biochem Biotech 168:163–173

    Article  CAS  Google Scholar 

  • Singh OV, Jain RK (2003) Phytoremediation of toxic aromatic pollutants from soil. Appl Microbiol Biot 63:128–135

    Article  CAS  Google Scholar 

  • Sirikantaramas S, Morimoto S, Shoyama Y, Ishikawa Y, Wada Y, Shoyama Y, Taura F (2004) The gene controlling marijuana psychoactivity: molecular cloning and heterologous expression of Δ1-tetrahydrocannabinolic acid synthase from Cannabis sativa L. J Biol Chem 279:39767–39774

    Article  CAS  PubMed  Google Scholar 

  • Sirikantaramas S, Taura F, Tanaka Y, Ishikawa Y, Morimoto S, Shoyama Y (2005) Tetrahydrocannabinolic acid synthase, the enzyme controlling marijuana psychoactivity, is secreted into the storage cavity of the glandular trichomes. Plant Cell Physiol 46:1578–1582

    Article  CAS  PubMed  Google Scholar 

  • Slusarkiewicz-Jarzina A, Ponitka A, Kaczmarek Z (2005) Influence of cultivar, explant source and plant growth regulator on callus induction and plant regeneration of Cannabis sativa L. Acta Biol Crac Ser Bot 47:145–151

    Google Scholar 

  • Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025

    Article  CAS  PubMed  Google Scholar 

  • Spithoff S, Emerson B, Spithoff A (2015) Cannabis legalization: adhering to public health best practice. Can Med Assoc J 187:1211–1216

    Article  Google Scholar 

  • Srivastava S, Srivastava AK (2007) Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 27:29–43

    Article  CAS  PubMed  Google Scholar 

  • Stott CG, Guy GW (2004) Cannabinoids for the pharmaceutical industry. Euphytica 140:83–93

    Article  CAS  Google Scholar 

  • Stout JM, Boubakir Z, Ambrose SJ, Purves RW, Page JE (2012) The hexanoyl-CoA precursor for cannabinoid biosynthesis is formed by an acyl-activating enzyme in Cannabis sativa trichomes. Plant J 71:353–365

    CAS  PubMed  Google Scholar 

  • Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H, Xi Y (2015) Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5:10342

    Article  PubMed  PubMed Central  Google Scholar 

  • Taura F (2009) Studies on tetrahydrocannabinolic acid synthase that produces the acidic precursor of tetrahydrocannabinol, the pharmacologically active cannabinoid in marijuana. Drug Discov Ther 3:83–87

    Google Scholar 

  • Taura F, Dono E, Sirikantaramas S, Yoshimura K, Shoyama Y, Morimoto S (2007) Production of Δ1-tetrahydrocannabinolic acid by the biosynthetic enzyme secreted from transgenic Pichia pastoris. Biochem Bioph Res Co 361:675–680

    Article  CAS  Google Scholar 

  • Taura F, Morimoto S, Shoyama Y, Mechoulam R (1995) First direct evidence for the mechanism of Δ1-tetrahydrocannabinolic acid biosynthesis. J Am Chem Soc 117:9766–9767

    Article  CAS  Google Scholar 

  • Taura F, Tanaka S, Taguchi C, Fukamizu T, Tanaka H, Shoyama Y, Morimoto S (2009) Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway. FEBS Lett 583:2061–2066

    Article  CAS  PubMed  Google Scholar 

  • Tepfer D (1990) Genetic transformation using Agrobacterium rhizogenes. Physiol Plantarum 79:140–146

    Article  CAS  Google Scholar 

  • van Bakel H, Stout JM, Cote AG, Tallon CM, Sharpe AG, Hughes TR, Page JE (2011) The draft genome and transcriptome of Cannabis sativa. Genome Biol 12:R102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van den Broeck HC, Maliepaard C, Ebskamp MJM, Toonen MAJ, Koops AJ (2008) Differential expression of genes involved in C1 metabolism and lignin biosynthesis in wooden core and bast tissues of fibre hemp (Cannabis sativa L.). Plant Sci 174:205–220

    Article  CAS  Google Scholar 

  • Veena V, Taylor CG (2007) Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell Dev Biol Plant 43:383–403

    Article  CAS  Google Scholar 

  • Velasco G, Sánchez C, Guzmán M (2012) Towards the use of cannabinoids as antitumor agents. Nat Rev Cancer 12:436–444

    Article  CAS  PubMed  Google Scholar 

  • Wahby I, Caba JM, Ligero F (2012) Agrobacterium infection of hemp (Cannabis sativa L.): establishment of hairy root cultures. J Plant Interact 8:312–320

    Article  CAS  Google Scholar 

  • Wang R, He L-S, Xia B, Tong J-F, Li N, Peng F (2009) A micropropagation system for cloning of hemp (Cannabis sativa L.) by shoot tip culture. Pak J Bot 41:603–608

    CAS  Google Scholar 

  • Weiblen GD, Wenger JP, Craft KJ, ElSohly MA, Mehmedic Z, Treiber EL, Marks MD (2015) Gene duplication and divergence affecting drug content in Cannabis sativa. New Phytol 208:1241–1250

    Article  CAS  PubMed  Google Scholar 

  • Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3:259–273

    Article  CAS  PubMed  Google Scholar 

  • Zaenen I, van Larebeke N, Teuchy H, van Montagu M, Schell J (1974) Supercoiled circular DNA in crown-gall inducing Agrobacterium strains. J Mol Biol 86:109–127

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Ding R, Chai Y, Bonfill M, Moyano E, Oksman-Caldentey KM, Xu T, Pi Y, Wang Z, Zhang H, Kai G, Liao Z, Sun X, Tang K (2004) Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc Nat Acad Sci 101:6786–6791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zirpel B, Stehle F, Kayser O (2015) Production of Δ9-tetrahydrocannabinolic acid from cannabigerolic acid by whole cells of Pichia (Komagataella) pastoris expressing Δ9-tetrahydrocannabinolic acid synthase from Cannabis sativa L. Biotechnol Lett 37:1869–1875

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a BBSRC grant (BB/J017582/1) for MF and an NSERC Discovery Grant to ZKP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zamir K. Punja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Feeney, M., Punja, Z.K. (2017). The Role of Agrobacterium-Mediated and Other Gene-Transfer Technologies in Cannabis Research and Product Development. In: Chandra, S., Lata, H., ElSohly, M. (eds) Cannabis sativa L. - Botany and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-54564-6_16

Download citation

Publish with us

Policies and ethics