Skip to main content

Self-organized Criticality: A Signature of Quantum-like Chaos in Atmospheric Flows

  • Chapter
  • First Online:
Self-organized Criticality and Predictability in Atmospheric Flows

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

Atmospheric flows exhibit long-range spatiotemporal correlations manifested as the fractal geometry to the global cloud cover pattern concomitant with inverse power-law form for power spectra of temporal fluctuations on all space-time scales ranging from turbulence (centimetres-seconds) to climate (kilometres-years). Long-range spatiotemporal correlations are ubiquitous to dynamical systems in nature and are identified as signatures of self-organized criticality. Standard models in meteorological theory cannot explain satisfactorily the observed self-organized criticality in atmospheric flows. Mathematical models for simulation and prediction of atmospheric flows are nonlinear and do not possess analytical solutions. Finite precision computer realizations of nonlinear models give unrealistic solutions because of deterministic chaos, a direct consequence of round-off error growth in iterative numerical computations. Recent studies show that round-off error doubles on an average for each iteration of iterative computations. Round-off error propagates to the mainstream computation and gives unrealistic solutions in numerical weather prediction (NWP) and climate models, which incorporate thousands of iterative computations in long-term numerical integration schemes. A general systems theory model for atmospheric flows developed by the author predicts the observed self-organized criticality as intrinsic to quantumlike chaos in flow dynamics. The model provides universal quantification for self-organized criticality in terms of the golden ratio τ (≈1.618). Model predictions are in agreement with a majority of observed spectra of time series of several standard meteorological and climatological data sets representative of disparate climatic regimes. Universal spectrum for natural climate variability rules out linear trends. Man-made greenhouse gas related atmospheric warming would result in intensification of natural climate variability, seen immediately in high-frequency fluctuations such as QBO and ENSO and even shorter timescales. Model concepts and results of analyses are discussed with reference to possible prediction of climate change. Model concepts, if correct, rule out unambiguously, linear trends in climate. Climate change will only be manifested as increase or decrease in the natural variability. However, more stringent tests of model concepts and predictions are required before applications to such an important issue as climate change. The cell dynamical system model for atmospheric flows is a general systems theory applicable in general to all dynamical systems in other fields of science, such as, number theory, biology, physics and botany.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Argyris, J., Ciubotariu, C.: On El Naschie’s complex time and gravitation. Chaos, Solitons Fractals 8, 743–751 (1997)

    Article  Google Scholar 

  • Aspect, A.: Viewpoint: closing the door on Einstein and Bohr’s quantum debate. Physics 8, 123 (4 pages) (2015)

    Google Scholar 

  • Aspelmeyer, M., Zeilinger, A.: Feature: a quantum renaissance. Phys. World 22–28 (2008)

    Google Scholar 

  • Bak, P., Chen, K.: The physics of fractals. Physica D 38, 5–12 (1989)

    Article  Google Scholar 

  • Bak, P., Chen, K.: Self-organized criticality. Sci. Am. 264(1), 46–53 (1991)

    Article  Google Scholar 

  • Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987)

    Article  Google Scholar 

  • Bak, P.C., Tang, C., Wiesenfeld, K.: Self-organized criticality. Phys. Rev. A 38, 364–374 (1988)

    Article  Google Scholar 

  • Berry, M.V.: The geometric phase. Sci. Amer. 259(6), 26–34 (1988)

    Article  Google Scholar 

  • Boeyens, J.C.A., Thackeray, J.F.: Number theory and the unity of science. S. Afr. J. Sci. 110(11/12), 5–6 (2014)

    Article  Google Scholar 

  • Brown, J.: Where two worlds meet. New Sci. 150(2030), 26–30 (1996)

    Google Scholar 

  • Buchanan, M.: One law to rule them all. New Sci. 156(2107), 30–35 (1997)

    Google Scholar 

  • Buchanan, M.: Fractal reality. New Sci. 201(2701), 37–39 (2009)

    Article  Google Scholar 

  • Buchanan, M.: Does not compute? Nat. Phys. 10(6), 404 (2014)

    Article  Google Scholar 

  • Bush, J.W.M.: Pilot-wave hydrodynamics. Annu. Rev. Fluid Mech. 47, 269–292 (2015)

    Article  Google Scholar 

  • Chiao, R.Y., Kwiat, P.G., Steinberg, A.M.: Faster than light. Sci. Am. 269(2), 52–60 (1993)

    Article  Google Scholar 

  • Coldea, R., Tennant, D.A., Wheeler, E.M., Wawrzynska, E., Prabhakaran, D., Telling, M., Habicht, K., Smeibidl, P., Kiefer, K.: Quantum criticality in an ising chain: experimental evidence for emergent E8 symmetry. Science 327(5962), 177–180 (2010)

    Article  Google Scholar 

  • Craig, G.C., Mack, J.M.: A coarsening model for self-organization of tropical convection. J. Geophys. Res. Atmos. 118, 8761–8769 (2013)

    Article  Google Scholar 

  • Delbourgo, R.: Universal facets of chaotic processes. Asia-Pacific Physics News 1, 7–11 (1986)

    Google Scholar 

  • Dessai, S., Walter, M.E.: Self-organized criticality and the atmospheric sciences: selected review, new findings and future directions (2000). http://www.esig.ucar.edu/extremes/papers/walter.PDF

  • Ecke, R.E.: Chaos, patterns, coherent structures, and turbulence: reflections on nonlinear science. Chaos: An Interdisciplinary Journal of Nonlinear Science 25, 097605(8 pages) (2015)

    Google Scholar 

  • El Naschie, M.S.: A review of E-infinity theory and the mass spectrum of high energy particle physics. Chaos, Solitons Fractals 19, 209–236 (2004)

    Article  Google Scholar 

  • Feigenbaum, M.J.: Universal behavior in nonlinear systems. Los Alamos Sci. 1, 4–27 (1980)

    Google Scholar 

  • Ford, K.W.: Basic physics. Blaisdell Publishing Company, Waltham, Massachusetts, USA (1968)

    Google Scholar 

  • Giustina, M., Versteegh, M.A.M., Wengerowsky, S., et al.: 2015: Significant-loophole-free test of bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401(7 pages)

    Google Scholar 

  • Gleick, J.: Chaos: making a new science. Viking, New York (1987)

    Google Scholar 

  • Grossing, G.: Quantum systems as order out of chaos phenomena. Il Nuovo Cimento 103B, 497–510 (1989)

    Article  Google Scholar 

  • Hensen, B., Bernien, H., Dréau, A.E., et al.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometers. Nature 526, 682–686 (2015)

    Google Scholar 

  • Heyrovska, R.: Golden ratio based fine structure constant and rydberg constant for hydrogen spectra. Int. J. Sci. 2, 28–31 (2013)

    Google Scholar 

  • Heyrovska, R., Narayan, S.: Fine-structure constant, anomalous magnetic moment, relativity factor and the golden ratio that divides the Bohr radius (2005) http://arxiv.org/ftp/physics/papers/0509/0509207.pdf

    Google Scholar 

  • Heyrovska, R.: The golden ratio in the creations of nature arises in the architecture of atoms and ions. In: Şener, B. (ed.) Innovations in Chemical Biology, pp. 133–139. Springer (2009)

    Google Scholar 

  • Iovane, G., Chinnici, M., Tortoriello, F.S.: Multifractals and El Naschie E-infinity Cantorian space–time. Chaos, Solitons Fractals 35(4), 645–658 (2008)

    Article  Google Scholar 

  • Itzhak, B., Rychkov, D.: Background independent string field theory (2014) arXiv:1407.4699v2

  • Jean, R.V.: Phyllotaxis: A Systemic Study in Plant Morphogenesis. Cambridge University Press, New York (1994)

    Book  Google Scholar 

  • Kaku, M.: Into the eleventh dimension. New Sci. 153(2065), 32–36 (1997)

    Google Scholar 

  • Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C. R. Acad. Sci. URSS 30, 301–305 (1941)

    Google Scholar 

  • Konar, S.: A divine surprise: the golden mean and the round-off error. Resonance 11(4), 91–99 (2006)

    Article  Google Scholar 

  • Li, M., Zhao, W.: Golden ratio phenomenon of random data obeying von Karman spectrum. Math. Probl. Eng. 2013, 1–6 (2013a). doi:10.1155/2013/130258

    Google Scholar 

  • Li, M., Zhao, W.: Essay on Kolmogorov law of minus 5 over 3 viewed with golden ratio. Adv. High Energy Phys. 2013, 1–3 (2013b). doi:10.1155/2013/680678

    Google Scholar 

  • Linage, G., Montoya, F., Sarmiento, A., Showalter, K., Parmananda, P.: Fibonacci order in the period-doubling cascade to chaos. Phys. Lett. A 359, 638–639 (2006)

    Article  Google Scholar 

  • Lindner, J.F., Kohar, V., Kia, B., Hippke, M., Learned, J.G., Ditto, W.L.: Strange nonchaotic stars. Phys. Rev. Lett. 114, 054101 (2015)

    Article  Google Scholar 

  • Liu, Z., Alexander, M.: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys. 45, RG2005 (2007). doi:10.1029/2005RG000172

  • Lovejoy, S., Schertzer, D.: Scale invariance, symmetries, fractal and stochastic simulations of atmospheric phenomena. Bull. Am. Meteorol. Soc. 67, 21–32 (1986a)

    Article  Google Scholar 

  • Lovejoy, S., Schertzer, D.: Scale in variance in climatological temperatures and the local spectral plateau. Annates Geophysicae 86B, 401–409 (1986b)

    Google Scholar 

  • Maddox, J.: Licence to slang Copenhagen? Nature 332, 581 (1988)

    Article  Google Scholar 

  • Maddox, J.: Can quantum theory be understood? Nature 361(6412), 493 (1993)

    Article  Google Scholar 

  • Mandelbrot, B.B.: Fractals: Form, Chance and Dimension. W. H. Freeman and Co., San Francisco (1977)

    Google Scholar 

  • Mandelbrot, B.B.: The Fractal Geometry of Nature. W. H. Freeman and Co., NY (1983)

    Google Scholar 

  • Moskowitz, C.: If spacetime were a superfluid, would it unify physics—or is the theory all wet? Sci. Am. (2014). http://www.scientificamerican.com/article/superfluid-spacetime-relativity-quantum-physics/

  • Moss, F., Wiesenfeld, K.: The benefits of background noise. Sci. Am. 273(2), 66–69 (1995)

    Article  Google Scholar 

  • Nigam, S., Baxter, S.: Teleconnections. In: Encyclopedia of Atmospheric Sciences, 2nd ed., pp. 90–109. Elsevier Ltd, London (2015)

    Google Scholar 

  • Nottale, L., Schneider, J.: Fractals and non-standard analysis. J. Math. Phys. 25, 1296–1300 (1984)

    Article  Google Scholar 

  • Ord, G.N.: Fractal space-time: a geometric analogue of relativistic quantum mechanics. J. Phys. A 16, 1869–1884 (1983)

    Article  Google Scholar 

  • Palmer, T.N.: Quantum reality, complex numbers, and the meteorological butterfly effect. Bull. Am. Meteorol. Soc. 86, 519–530 (2005)

    Article  Google Scholar 

  • Palmer, T.N.: The invariant set postulate: a new geometric framework for the foundations of quantum theory and the role played by gravity. Proc. R. Soc. A 465, 1–21 (2009)

    Article  Google Scholar 

  • Palmer, T.N.: Gödel and Penrose: new perspectives on determinism and causality in fundamental physics. Contemp. Phys. 55(3), 157–178 (2014)

    Article  Google Scholar 

  • Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59 (1965)

    Article  Google Scholar 

  • Penrose, R.: The Emperor’s New Mind. Oxford University Press, UK (1989)

    Google Scholar 

  • Perkins, R.: String field theory could be the foundation of quantum mechanics (2014). http://phys.org/news/2014-11-field-theory-foundation-quantummechanics.html

  • Philander, S.G.: El Nino, La Nina and the Southern Oscillation. International Geophysical Series 46, Academic Press, NY (1990)

    Google Scholar 

  • Phys.org.: Atoms can be in two places at the same time. Retrieved 21 Jan 2015 from http://phys.org/news/2015-01-atoms.html

  • Phys.org.: Experimentally testing nonlocality in many-body systems (2014). http://phys.org/news/2014-06-experimentally-nonlocality-many-body.html

  • Popescu, S.: Nonlocality beyond quantum mechanics. Nat. Phys. 10, 264–270 (2014)

    Article  Google Scholar 

  • Puthoff, H.E.: Ground state of hydrogen as a zero-point fluctuation-determined state. Phys. Rev. D 35, 3266–3269 (1987)

    Article  Google Scholar 

  • Puthoff, H.E.: Gravity as a zero-point fluctuation force. Phys. Rev. A 39, 2333–2342 (1989)

    Article  Google Scholar 

  • Rae, A.: Quantum-physics: lllusion or reality?. Cambridge University Press, New York (1988)

    Google Scholar 

  • Ringbauer, M., Duffus, B., Branciard, C., Cavalcanti, E.G., White, A.G., Fedrizzi, A.: Measurements on the reality of the wavefunction. Nat. Phys. 11, 249–254 (2015)

    Article  Google Scholar 

  • Rini, M.: Synopsis: finding climate teleconnection paths. Physics, Dec 2015, American Physical Society. https://physics.aps.org/synopsis-for/10.1103/PhysRevLett.115.268501

  • Robens, C., Alt, W., Meschede, D., Emary, C., Alberti, A.: Ideal negative measurements in quantum walks disprove theories based on classical trajectories. Phys. Rev. X 5, 011003 (10 pages) (2015). doi:10.1103/PhysRevX.5.011003)

  • Sanders, L.: Everyday entanglement: physicists take quantum weirdness out of the lab. Sci. News 178(11), 22–29 (2010)

    Article  Google Scholar 

  • Sanz, A.S.: Investigating puzzling aspects of the quantum theory by means of its hydrodynamic formulation. Found. Phys. 45, 1153–1165 (2015)

    Article  Google Scholar 

  • Schertzer, D., Lovejoy, S.: Nonlinear Variability in Geophysics—Scaling and Fractals. Kluwer Academic press, Dordretch, Holland (1991)

    Google Scholar 

  • Schertzer, D., Lovejoy, S.: Multifractal generation of self-organized criticality. In: Novak, M.M. (ed.) Fractals in the Natural and Applied Sciences (A-41), pp. 325–339. Elsevier Science B.V., North-Holland (1994)

    Google Scholar 

  • Schlosshauer, M., Kofler, J., Zeilinger, A.: (2013a): Snapshot of foundational attitudes toward quantum mechanics. arXiv:1301.1069v1 [quant-ph] 6 Jan 2013

  • Schlosshauer, M., Kofler, J., Zeilinger, A.: The interpretation of quantum mechanics: from disagreement to consensus? Ann. Phys. 525(4), A51–A54 (2013b)

    Article  Google Scholar 

  • Schroeder, M.: Fractals, Chaos and Power-Laws. W. H. Freeman and Co., NY (1991)

    Google Scholar 

  • Selvam, A.M.: Deterministic chaos, fractals and quantumlike mechanics in atmospheric flows. Can. J. Phys. 68, 831–841 (1990). http://xxx.lanl.gov/html/physics/0010046

  • Selvam, A.M.: Universal quantification for deterministic chaos in dynamical systems. Appl. Math. Model. 17, 642–649 (1993). http://xxx.lanl.gov/html/physics/0008010

  • Selvam, A.M.: Quasicrystalline pattern formation in fluid substrates and phyllotaxis. In: Barabe, D., Jean, R.V. (eds.) Symmetry in Plants. World Scientific Series in Mathematical Biology and Medicine, vol. 4, pp. 795–809. Singapore (1998). http://xxx.lanl.gov/abs/chao-dyn/9806001

  • Selvam, A.M.: Cantorian fractal spacetime and quantum-like chaos in neural networks of the human brain. Chaos, Solitons Fractals 10, 25–29 (1999). http://xxx.lanl.gov/abs/chao-dyn/9809003

  • Selvam, A.M.: Chaotic Climate Dynamics. Luniver Press, UK (2007)

    Google Scholar 

  • Selvam, A.M.: Fractal fluctuations and statistical normal distribution. Fractals 17(3), 333–349 (2009). http://arxiv.org/pdf/0805.3426

  • Selvam, A.M.: Quantum-like chaos in prime number distribution and in turbulent fluid flows. Apeiron 8, 29–64 (2001a). http://redshift.vif.com/JournalFiles/V08NO3PDF/V08N3SEL.PDF http://xxx.lanl.gov/html/physics/0005067

  • Selvam, A.M.: Signatures of quantum-like chaos in spacing intervals of non-trivial Riemann zeta zeros and in turbulent fluid flows. Apeiron 8, 10–40 (2001b). http://redshift.vif.com/JournalFiles/V08NO4PDF/V08N4SEL.PDF http://xxx.lanl.gov/html/physics/0102028

  • Selvam, A.M.: Cantorian fractal space-time fluctuations in turbulent fluid flows and the kinetic theory of gases. Apeiron 9, 1–20 (2002a). http://redshift.vif.com/JournalFiles/V09NO2PDF/V09N2sel.PDF http://xxx.lanl.gov/html/physics/9912035

  • Selvam, A.M.: Quantumlike chaos in the frequency distributions of the bases A, C, G, T in Drosophila DNA. Apeiron 9, 103–148 (2002b). http://redshift.vif.com/JournalFiles/V09NO4PDF/V09N4sel.pdf http://arxiv.org/html/physics/0210068

  • Selvam, A.M.: Scale-free universal spectrum for atmospheric aerosol size distribution for Davos, Mauna Loa and Izana. Int. J. Bifurcat. Chaos 23, 1350028 (13 pages) (2013) http://arxiv.org/pdf/1111.3132

  • Selvam, A.M.: Universal inverse power-law distribution for temperature and rainfall in the UK region. Dyn. Atmos. Oceans 66, 138–150 (2014)

    Article  Google Scholar 

  • Selvam, A.M.: Rain Formation in Warm Clouds: General Systems Theory. SpringerBriefs in Meteorology. Springer (2015)

    Google Scholar 

  • Selvam, A.M., Fadnavis, S.: Signatures of a universal spectrum for atmospheric inter-annual variability in some disparate climatic regimes. Meteorol. Atmosp. Phys. 66, 87–112 (1998). http://xxx.lanl.gov/abs/chao-dyn/9805028

  • Selvam, A.M., Sen, D., Mody, S.M.S.: Critical fluctuations in daily incidence of acute myocardial infarction. Chaos, Solitons Fractals 11, 1175–1182 (2000). http://xxx.lanl.gov/abs/chao-dyn/9810017

  • Selvam, A.M., Joshi, R.R.: Universal spectrum for interannual variability in COADS global air and sea surface temperatures. Int. J. Climatol. 15, 613–624 (1995)

    Article  Google Scholar 

  • Selvam, A.M., Pethkar, J.S., Kulkarni, M.K.: Signatures of a universal spectrum for atmospheric interannual variability in rainfall time series over the Indian region. Int. J. Climatol. 12, 137–152 (1992)

    Article  Google Scholar 

  • Selvam, A.M., Pethkar, J.S., Kulkarni, M.K., Vijayakumar, R.: Signatures of a universal spectrum for atmospheric interannual variability in COADS surface pressure time series. Int. J. Climatol. 16, 1–11 (1996)

    Article  Google Scholar 

  • Shalm, L.K., Meyer-Scott, E., Christensen, B.G., et al.: Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (10 pages) (2015)

    Google Scholar 

  • Spruch, L.: Long-range (Casimir) interactions. Science 272, 1452–1455 (1996)

    Article  Google Scholar 

  • Sreenivasan, K.R.: Fractals and multifractals in turbulence. Annu. Rev. Fluid Mech. 23, 539–600 (1991)

    Article  Google Scholar 

  • Stanley, H.E.: Exotic statistical physics: applications to biology, medicine, and economics. Phys. A 285, 1–17 (2000)

    Article  Google Scholar 

  • Stechmann, S.N., Neelin, J.D.: First-passage-time prototypes for precipitation statistics. J. Atmos. Sci. 71(9), 3269–3291 (2014)

    Article  Google Scholar 

  • Steinhardt, P.: Crazy crystals. New Sci. 153, 32–35 (1997)

    Google Scholar 

  • Stewart, I.: Warning—handle with care! Nature 135, 16–17 (1992)

    Article  Google Scholar 

  • Stewart, I.: Sources of uncertainty in deterministic dynamics: an informal overview. Phil. Trans. R. Soc. A 369, 4705–4729 (2011)

    Article  Google Scholar 

  • Strambini, E., Makarenko, K.S., Abulizi, G., de Jong, M.P., van der Wiel, W.G.: Geometric reduction of dynamical nonlocality in nanoscale quantum circuits. Sci. R. 6, 18827 (6 pages) (2016)

    Google Scholar 

  • ’t Hooft, G.: Superstrings and the foundations of quantum mechanics. Found. Phys. 44, 463–471 (2014)

    Article  Google Scholar 

  • Tessier, Y., Lovejoy, S., Schertzer, D.: Universal multifractals: theory and observations for rain and clouds. J. Appl. Meteorol. 32, 223–250 (1993)

    Article  Google Scholar 

  • Tura, J., Augusiak, R., Sainz, A.B., Vértesi, T., Lewenstein, M., Acín, A.: Detecting nonlocality in many-body quantum states. Science 344(6189), 1256–1258 (2014)

    Article  Google Scholar 

  • Uzer, T., Farrelly, D., Milligan, J.A., Raines, P.E., Skelton, J.P.: Celestial mechanics on a microscopic scale. Science 253, 42–48 (1991)

    Article  Google Scholar 

  • Vedral, V.: The curious state of quantum physics. Phys. World 26(3), 30–34 (2013)

    Article  Google Scholar 

  • Vedral, V.: Living in a quantum world. Sci. Am. 38–43 (2011)

    Google Scholar 

  • Vivaldi, F.: Periodicity and transport from round-off errors. Exp. Math. 3(4), 303–315 (1994)

    Article  Google Scholar 

  • von Bertalanffy, L.: The history and status of general systems theory. Acad. Manage. J. 15(4), General Systems Theory, 407–426 (1972)

    Google Scholar 

  • von Karman, T.: Progress in the statistical theory of turbulence. Proc. Natl. Acad. Sci. 34(11), 530–539 (1948)

    Article  Google Scholar 

  • von Kármán, Th. “Mechanische Ähnlichkeit und Turbulenz”, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Fachgruppe 1 (Mathematik) 5: 58–76(also as: “Mechanical Similitude and Turbulence”, Tech. Mem. NACA, no. 611, 1931) (1930)

    Google Scholar 

  • Wang, P., Huang, G., Wang, Z.: Analysis and application of multiple-precision computation and round-off error for nonlinear dynamical systems. Adv. Atmos. Sci. 23(5), 758–766 (2006)

    Article  Google Scholar 

  • Watkins, N.W., Pruessner, G., Chapman, S.C., Crosby, N.B.: 25 years of SOC: concepts and controversies. Space Sci. Rev. 198(1), 3–44 (2016)

    Article  Google Scholar 

  • Weinberg, S.: Dreams of a Final Theory: The Scientist’s Search for the Ultimate Laws of Nature. Vintage (1993)

    Google Scholar 

  • Yano, I., Liu, C., Moncrieff, M.W.: Self-organized criticality and homeostasis in atmospheric convective organization. J. Atmos. Sci. 69(12), 3449–3462 (2012)

    Article  Google Scholar 

  • Zeng, X., Pielke, R.A., Eykholt, R.: Chaos theory and its applications to the atmosphere. Bull. Am. Meteorol. Soc. 74, 631–644 (1993)

    Article  Google Scholar 

  • Zhou, D., Gozolchiani, A., Ashkenazy, Y., Havlin, S.: Teleconnection paths via climate network direct link detection. Phys. Rev. Lett. 115, 268501 (5 pages) (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amujuri Mary Selvam .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Selvam, A.M. (2017). Self-organized Criticality: A Signature of Quantum-like Chaos in Atmospheric Flows. In: Self-organized Criticality and Predictability in Atmospheric Flows. Springer Atmospheric Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-54546-2_3

Download citation

Publish with us

Policies and ethics