Skip to main content

Mantle-Carbonatite Conception of Diamond and Associated Phases Genesis

  • Chapter
  • First Online:
Genesis of Diamonds and Associated Phases

Part of the book series: Springer Mineralogy ((MINERAL))

Abstract

The mantle-carbonatite conception of diamond genesis has been worked out as the result of consistent concordance of mineralogical and experimental evidence. This makes possible to have arrived to the construction of the generalized diagrams for compositions of diamond-producing melts under the upper mantle, transition zone and lower mantle conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaogi M (2007) Phase transitions of minerals in the transition zone and upper part of the lower mantle. In: Ohtani E (ed) Advances in high-pressure mineralogy, geological society of America special paper 421, p 1–13. doi:10.1130/2007.2421(01)

  • Beattie P, Drake M, Jones J et al (1993) Terminology for trace-element partitioning. Geochim Cosmochim Acta 57(7):1605–1606

    Article  Google Scholar 

  • Blundy J, Dalton J (2000) Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems, and implications for mantle metasomatism. Contrib Mineral Petrol 139(3):356–371

    Article  Google Scholar 

  • Bobrov AV, Litvin YuA (2009) Peridotite-eclogite-carbonatite systems at 7.0–8.5 GPa: concentration barrier of diamond nucleation and syngenesis of its silicate and carbonate inclusions. Russ Geol Geoph 50:1221–1233

    Article  Google Scholar 

  • Bobrov AV, Litvin YuA, Kuzyura AV et al (2014) Partitioning of trace elements between Na-bearing majoritic garnet and melt at 8.5 GPa and 1500–1900 C. Lithos 189:159–166

    Article  Google Scholar 

  • Boyd FR, Danchin RV (1980) Lherzolites, eclogites, and megacrysts from some kimberlites of Angola. Amer J Sci 280(2):528–549

    Google Scholar 

  • Brenan JM, Watson EB (1991) Partitioning of trace elements between carbonate melt and clinopyroxene and olivine at mantle P-T conditions. Geochim Cosmochim Acta 55(8):2203–2214

    Article  Google Scholar 

  • Brey GP, Bulatov VK, Girnis AV, Lahaye Y (2008) Experimental melting of carbonated peridotite at 6–10 GPa. J Petrol 49(4):797–821

    Article  Google Scholar 

  • Dalton JA, Presnall DC (1998) Carbonatitic melts along the solidus of model lherzolite in the system CaO–MgO–Al2O3–SiO2–CO2 from 3 to 7 GPa. Contrib Mineral Petrol 131(2–3):123–135

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM, McDonough WF et al (2009) Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts. Chem Geol 262(1–2):57–77

    Article  Google Scholar 

  • Dawson JB (1980) Kimberlites and Their Xenoliths. Springer, New York, p 252

    Google Scholar 

  • Gasparik T, Litvin YA (1997) Stability of Na2Mg2Si2O7 and melting relations on the forsterite-jadeite join at pressures up to 22 GPa. Eur J Miner 9(2):311–326

    Article  Google Scholar 

  • Gasparik T, Litvin YA (2002) Experimental investigation of the effect of metasomatism by carbonatic melt on the composition and structure of the deep mantle. Lithos 60(3–4):129–143

    Article  Google Scholar 

  • Girnis AV, Bulatov VK, Brey GP et al (2013) Trace element partitioning between mantle minerals and silico-carbonate melts at 6–12 GPa and applications to mantle metasomatism and kimberlite genesis. Lithos 160:183–200

    Article  Google Scholar 

  • Hammouda T, Moine B, Devidal J, Vincent C (2009) Trace element partitioning during partial melting of carbonated eclogites. Phys Earth Planet Inter 174(1–4):60–69

    Article  Google Scholar 

  • Harte B, Kirkley MB (1997) Partitioning of trace elements between clinopyroxene and garnet: data from mantle eclogites. Chem Geol 136(1–2):1–24

    Article  Google Scholar 

  • Ionov D (2004) Chemical variations in peridotite xenoliths from Vitim, Siberia: inferences for REE and Hf behaviour in the garnet-facies upper mantle. J Petrol 45(2):343–367

    Article  Google Scholar 

  • Kaminsky F (2012) Mineralogy of the lower mantle: a review of ‘super-deep’ mineral inclusions in diamond. Earth Sci Rev 110:127–147. doi:10.1016/.earscirev.2011.10.005

    Article  Google Scholar 

  • Klein-BenDavid O, Izraeli ES, Hauri E, Navon O (2007) Fluid diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids. Geochim Cosmochim Acta 71(3):723–744

    Article  Google Scholar 

  • Klein-BenDavid O, Logvinova AM, Schrauder M et al (2009) High-Mg carbonatitic microinclusions in some Yakutian diamonds—a new type of diamond-forming fluid. Lithos 112(Suppl. 2):648–659

    Article  Google Scholar 

  • Klein-BenDavid O, Pearson DG, Nowell GM et al (2010) Mixed fluid sources involved in diamond growth constrained by Sr–Nd–Pb–C–N isotopes and trace elements. Earth Planet Sci Lett 289(1–2):123–133

    Article  Google Scholar 

  • Klein-BenDavid O, Graham PD, Nowell GM et al (2014) The sources and time-integrated evolution of diamond-forming fluids—Trace elements and isotopic evidence. Geochim Cosmochim Acta 125:146–169

    Article  Google Scholar 

  • Kurat G, Dobosi G (2000) Garnet and diopside-bearing diamondites (framesites). Mineral Petrol 69(3–4):143–159

    Article  Google Scholar 

  • Kuzyura AV, Wall F, Jeffries T, Litvin YA (2010) Partitioning of trace elements between garnet, clinopyroxene, and diamond-forming carbonate-silicate melt at 7 GPa. Mineral Mag 74(2):227–239

    Article  Google Scholar 

  • Kuzyura AV, Litvin YA, Jeffrises T (2015) Interface partition coefficients of trace elements in carbonate-silicate parental media for diamonds and paragenetic inclusions (experiments at 7.0-8.5 GPa). Russ Geol Geoph 56:221–231

    Article  Google Scholar 

  • Lee WJ, Wyllie PJ, Rossman GR (1994) CO2-rich glass, round calcite crystals, and no liquid immiscibility in the system CaO–SiO2–CO2 at 25 GPa. Amer Mineral 79(11–12):1135–1144

    Google Scholar 

  • Litvin VY, Gasparik T, Litvin YA (2000) The System Enstatite-Nepheline in Experiments at 6.5-13.5 GPa: an Importance of Na2Mg2Si2O7 for the Melting of Nepheline-normative Mantle. Geochem Int 38(1):S100

    Google Scholar 

  • Litvin YA (1998) Mantle’s hot spots and experiment to 10 GPa: alkaline reactions, lithosphere carbonatization, and new diamond-generating systems. Russ Geol Geoph 39(12):1761–1767

    Google Scholar 

  • Litvin YA (2007) High-pressure mineralogy of diamond genesis. In: Ohtani E (ed) Advances in high-pressure mineralogy, geological society of America special paper 421, p 83–103. doi:10.1130/2007.2421(06)

  • Litvin YA (2009) The physicochemical conditions of diamond formation in the mantle matter: experimental studies. Russ Geol Geoph 50(12):1188–1200

    Article  Google Scholar 

  • Litvin YA (2011) Mantle origin of diamond-parent carbonatite magma: experimental approaches. Geophys Res. Abstr, vol 13, EGU2011-3627, EGU General Assembly

    Google Scholar 

  • Litvin YA (2012) Physicochemical formation conditions of natural diamond deduced from experimental study of the eclogite-carbonatite-sulfide-diamond system. Geol Ore Depos 54(6):443–457

    Article  Google Scholar 

  • Litvin YA (2013) Physico-chemical conditions of syngenesis of diamond and heterogeneous inclusions in carbonate-silicate parental melts (experimental study). Mineral J 35:24–25

    Google Scholar 

  • Litvin YA, Zharikov VA (2000) Experimental modeling of diamond genesis: Diamond crystallization in multicomponent carbonate-silicate melts at 5–7 GPa and 1200–1570 °C. Dokl Earth Sci 373:867–870

    Google Scholar 

  • Litvin YA, Litvin VY, Kadik AA (2008) Experimental characterization of diamond crystallization in melts of mantle silicate-carbonate-carbon systems at 7.0–8.5 GPa. Geochemistry International 46(6):531–553. doi:10.1134/S0016702908060013

    Article  Google Scholar 

  • Litvin YA, Spivak AV, Kuzyura AV (2016) Fundamentals of mantle carbonatite concept of diamond genesis. Geochem Internat 54(10):839–857. doi:10.1134/S0016702916100086

    Article  Google Scholar 

  • Litvin YA, Bovkun AV, Garanin VK (2017) Titanium minerals ant their melts in the mantle chambers of diamond-forming systems (experiments at 7–8 GPa). Geochem Internat (accepted)

    Google Scholar 

  • Litvin Yu, Spivak A, Solopova N, Dubrovinsky L (2014) On origin of lower-mantle diamonds and their primary inclusions. Phys Earth Planet Inter 228:176–185. doi:10.1016/j/pepi/2013.12.007

    Article  Google Scholar 

  • Litvin YA, Vasiliev PG, Bobrov AV et al (2012) Parental media of natural diamonds and primary mineral inclusions in them: evidence from physicochemical experiment. Geochem Internat 50(9):726–759

    Article  Google Scholar 

  • Logvinova AM, Wirth R, Fedorova EN, Sobolev NV (2008) Nanometre-sized mineral and fluid inclusions in cloudy Siberian diamonds: newinsights on diamond formation. Eur J Miner 20(3):317–331. doi:10.1127/0935-1221/2008/0020-1815

    Article  Google Scholar 

  • Lyubetskaya T, Korenaga J (2007) Chemical composition of Earth’s primitive mantle and its variance: Implications for global geodynamics. J Geoph Res 112(B3):B03212

    Google Scholar 

  • McKenna NM, Gurney JJ, Klump J, Davidson JM (2004) Aspects of diamond mineralization and distribution at the Helam Mine, South Africa. Lithos 77:193–208

    Article  Google Scholar 

  • Marakushev AA (1984) Peridotite nogules in kimberlites as the indicators for depp structure of lithosphere. In: Doklady of Soviet Geologists to the 27th Session of International Geological Congress. Petrology. Nauka, Moscow, pp 153–160

    Google Scholar 

  • Mathias M, Siebert JC, Rickwood PC (1970) Some aspects of the mineralogy and petrology of ultramafic xenoliths in kimberlite. Contrib Mineral Petrol 26(2):75–123

    Article  Google Scholar 

  • McDade P, Blundy JD, Wood BJ (2003) Trace element partitioning between mantle wedge peridotite and hydrous MgO-rich melt. Ame Mineral 88(11–12):1825–1831

    Article  Google Scholar 

  • Navon O, Hutcheon ID, Rossman GR, Wasserburg GJ (1988) Mantle derived fluids in diamond micro-inclusions. Nature 355(6193):784–789

    Article  Google Scholar 

  • Palatnik LS, Landau AI (1964) Phase Equilibria in Multicomponent Systems. New York, Holt, Rinehart and Winston, Inc., p 454

    Google Scholar 

  • Palyanov YN, Sokol AG, Borzdov YuM et al (1999) Diamond formation from mantle carbonate fluids. Nature 400(6743):417–418

    Article  Google Scholar 

  • Pertermann M, Hirschmann MM, Hametner K et al (2004) Experimental determination of trace element partitioning between garnet and silica-rich liquid during anhydrous partial melting of MORB-like eclogite. Geochem Geophys Geosyst 5(5):0001. doi:10.1029/2003GC000638

    Article  Google Scholar 

  • Pokhilenko NP, Agashev AM, Litasov KD, Pokhilenko LN (2015) Carbonatite metasomatism of peridotite lithospheric mantle implications for diamond formation and carbonatite-kimberlite magmatism. Russ Geol Geoph 56(1–2):361–383

    Google Scholar 

  • Rhines FN (1956) Phase Diagrams in Metallurgy: Their Development and Application. London, McGraw-Hill Book Company, Inc., p 348

    Google Scholar 

  • Ringwood AE (1962) A model for the upper mantle. J Geophys Res 67:857–866

    Article  Google Scholar 

  • Ringwood AE (1975) Composition and Petrology of the Earth’s Mantle. McGraw-Hill, New York et al.618 p

    Google Scholar 

  • Schrauder M, Navon O (1994a) Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochim Cosmochim Acta 58:761–771. doi:10.1016/0016-7037(94)90504-5

    Article  Google Scholar 

  • Shatsky VS, Zedgenizov DA, Ragozin AL (2010) Majoritic garnets in diamonds from placers of the north-eastern region of Siberian platform. Dokl Akad Nauk 432(6):811–814

    Google Scholar 

  • Shiryaev AA, Izraeli ES, Hauri EH et al (2005) Chemical, optical and isotopic investigation of fibrous diamonds from Brazil. Russ Geol Geoph 46(12):1185–1201

    Google Scholar 

  • Shushkanova AV, Litvin YuA (2008) Experimental evidence for liquid immiscibility in the model system CaCO3-pyrope-pyrrhotite at 7.0 GPa: the role of carbonatite and sulfide melts in diamond genesis. Canad Mineral 46:991–1005

    Article  Google Scholar 

  • Safonov OG, Perchuk LL, Litvin YuA (2007) Melting relations in the chloride-carbonate-silicate systems at high-pressure and the model for formation of alkalic diamond–forming liquids in the upper mantle. Earth Planet Sci Lett 253(1–2):112–128

    Article  Google Scholar 

  • Schrauder M, Navon O (1994b) Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng. Botswana Geochim Cosmochim Acta 58(2):761–771

    Article  Google Scholar 

  • Schrauder M, Koeberl C, Navon O (1996) Trace element analyses of fluid-bearing diamonds from Jwaneng. Botswana Geochim Cosmochim Acta 60(23):4711–4724

    Article  Google Scholar 

  • Skuzovatov SYu, Zedgenizov DA, Shatsky VS et al (2011) Composition of cloudy microinclusions in octahedral diamonds from the Internatsional’naya kimberlite pipe (Yakutia). Russ Geol Geoph 52(1):85–96

    Article  Google Scholar 

  • Sobolev NV (1977) The Deep-Seated Inclusions in Kimberlites and the Problem of the Composition of the Upper Mantle. Washington, DC., American Geophysical Union, p 304

    Google Scholar 

  • Sobolev VS, Sobolev NV, Lavrentiev VG (1972) Inclusions in diamond from diamond-bearing eclogite. Dok Akad Nauk SSSR 207(1):172–178

    Google Scholar 

  • Sokol AG, Palyanov YuN, Borzdov YuM et al (1998) Diamond crystallization in a Na2CO3 melt. Dokl Akad Nauk 361(3):388–391

    Google Scholar 

  • Spivak A, Solopova N, Dubrovinsky L, Litvin Yu (2015) Melting relations of multicomponent MgCO3–FeCO3–CaCO3–Na2O3 system at 11–26 GPa: application to deeper mantle diamond formation. Phys Chem Miner 42:817–824. doi:10.1007/s00269-015-0765-6

    Article  Google Scholar 

  • Stachel T, Harris JW (1997) Diamond precipitation and mantle metasomatism: evidence from the trace element chemistry of silicate inclusions in diamonds from Akwatia. Ghana Contrib Mineral Petrol 129(2–3):143–154. doi:10.1007/s004100050328

    Article  Google Scholar 

  • Stachel T, Aulbach S, Brey GP et al (2004) The trace element composition of silicate inclusions in diamonds. A Rev Lithos 77(1–4):1–19. doi:10.1016/j.lithos.03.027

    Article  Google Scholar 

  • Sweeney RJ, Green DH, Sie SH (1992) Trace and minor element partitioning between garnet and amphibole and carbonatitic melt. Earth Planet Sci Lett 113(1–2):1–14

    Article  Google Scholar 

  • Sweeney RJ, Prozesky V, Przybylowicz W (1995) Selected trace and minor element partitioning between peridotite minerals and carbonatite melts at 18–46 kb pressure. Geochim Cosmochim Acta 59(18):3671–3683

    Article  Google Scholar 

  • Thibault Y, Edgar AD, Lloyd FE (1992) Experimental investigation of melts from a carbonated phlogopite lherzolite: implications for metasomatism in the continental lithospheric mantle. Amer Mineral 77(7–8):784–794

    Google Scholar 

  • Tomlinson EL, Müller W (2009) A snapshot of mantle metasomatism: Trace element analysis of coexisting fluid (LA-ICP-MS) and silicate (SIMS) inclusions in fibrous diamonds. Earth Planet Sci Lett 279(3–4):362–372

    Article  Google Scholar 

  • Van Westrenen W, Blundy J, Wood B (1999) Crystal-chemical controls on trace element partitioning between garnet and anhydrous silicate melt. Amer Mineral 84(5–6):838–847

    Article  Google Scholar 

  • Wallace ME, Green DH (1988) An experimental determination of primary carbonatite magma composition. Nature 335(6188):343–346

    Article  Google Scholar 

  • Walter MJ, Bulanova GP, Armstrong LS et al (2008) Primary carbonatite melt from deeply subducted oceanic crust. Nature 454(7204):622–625

    Article  Google Scholar 

  • Weiss Y, Griffin WL, Navon O (2013) Diamond-forming fluids in fibrous diamonds: The trace-element perspective. Earth Planet Sci Lett 376:110–125

    Article  Google Scholar 

  • Yaxley GM, Green DH, Kamenetsky V (1998) Carbonatite metasomatism in the Southeastern Australian lithosphere. J Petrol 39(11–12):1917–1931

    Article  Google Scholar 

  • Zedgenizov DA, Rege S, Griffin WL et al (2007) Composition of trapped fluids in cuboid fibrous diamonds from the Udachnaya kimberlite: LAM-ICPMS analysis. Chem Geol 240(1–2):151–162. doi:10.1016/j.chemgeo.2007.02.003

    Article  Google Scholar 

  • Zedgenizov DA, Ragozin AL, Shatsky VS et al (2009) Mg and Fe-rich carbonate–silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia). Lithos 112(Suppl. 2):638–647

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy A. Litvin .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Litvin, Y.A. (2017). Mantle-Carbonatite Conception of Diamond and Associated Phases Genesis. In: Genesis of Diamonds and Associated Phases. Springer Mineralogy. Springer, Cham. https://doi.org/10.1007/978-3-319-54543-1_7

Download citation

Publish with us

Policies and ethics