Skip to main content

Strongly Compressed Carbonate Systems in Diamond Genesis

  • Chapter
  • First Online:
  • 593 Accesses

Part of the book series: Springer Mineralogy ((MINERAL))

Abstract

The crucial role of carbonate constituents in diamond genesis has warranted by the results of physico-chemical experimental investigations of diamond-parental systems under pressures typical for depths of the upper mantle, transition zone and lower mantle. Currently available evidence to the effects of congruent melting of carbonate minerals and the peculiarities of melting of deep-seated multicomponent carbonate systems is of critical importance for the diamond-producing processes. The relationships between melting temperatures of multicomponent carbonate systems and geothermal temperatures make it possible to produce carbonatitic melts within the deep Earth’s interior. Effects of a complete liquid miscibility of components of silicate-carbonate melts and the reasonably high values of solubility of diamond and metastable graphite in them are the governing factors in initiation of the principal physico-chemical mechanisms of genesis of diamonds and associated phases. Diamond-forming processes are also characterized by extraordinary kinetic effect of the joint crystallization of diamond and metastable graphite.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akaishi M (1996) Effect of Na2O and H2O addition to SiO2 on the synthesis of diamond from graphite. In: Proceedings of the 3rd NIRIM (National Institute for Research in Inorganic Materials) international symposium on advanced materials (ISAM’96), Tsukuba, Ibaraki, Japan, pp 75–80

    Google Scholar 

  • Akaishi M, Yamaoka S (2000) Crystallization of diamond from C–O–H fluids under high- pressure and high-temperature conditions. J Cryst Growth 209:999–1003. doi:10.1016/S0022-0248999000756-3

    Article  Google Scholar 

  • Arima M, Kozai Y, Akaishi M (2002) Diamond nucleation and growth by reduction carbonate melts under high-pressure and high-temperature conditions. Geology 30:691–694. doi:10.1130/0091-7613(2002)030<0691:DNAGBR>2.0.CO;2

    Article  Google Scholar 

  • Audetat A, Keppler H (2004) Viscosity of fluids in subduction zones. Science 303:513–516

    Article  Google Scholar 

  • Bobrov AV, Litvin YA (2011) Mineral equilibria of diamond-forming carbonate-silicate systems. Geochem Int 49(13):1267–1363

    Article  Google Scholar 

  • Bobrovsky SV, Godolev VM, Zamyshlyaev BV et al (1976) The study of thermal decompression influence on the spallation velocity for strong waves in solids. In: Physico-Tekhnicheskie Problemy Razrabotki Polezhykh Iskopaemykh, vol 3, pp 49–57 (and in: Soviet Mining Science)

    Google Scholar 

  • Boulard E, Guyot F, Fiquet G (2012) The influence of Fe content on Raman spectra and unit cell parameters on magnesite-siderite solid solutions. Phys Chem Miner 39:239–246. doi:10.1007/s00269-011-0479-3

    Article  Google Scholar 

  • Brey GP, Bulatov VK, Girnis AV, Lahaye Y (2008) Experimental melting of carbonated peridotite at 6–10 GPa. J Petrol 49(4):797–821

    Article  Google Scholar 

  • Bulanova GP, Walter MJ, Smith CB et al (2010) Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protholiths, carbonated melts and primary kimberlite magmatism. Contrib Mineral Petrol 160:489–510

    Article  Google Scholar 

  • Bundy FP, Basset WA, Weathers MS et al (1996) The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon 34:141–153

    Article  Google Scholar 

  • Buob A, Luth RW, Schmidt MW, Ulmer P (2006) Experiments on CaCO3-MgCO3 solid solutions at high pressure and temperature. Amer Miner 91:435–440

    Article  Google Scholar 

  • Bureau H, Keppler H (1999) Complete miscibility between silicate melts and hydrous fluids in the upper mantle: experimental evidence and geochemical applications. Earth Planet Sci Lett 165:187–196

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett 298:1–13. doi:10.1016/j.epsl.2010.06.039

    Article  Google Scholar 

  • Dawson JB (1980) Kimberlites and their xenoliths. Springer, Berlin

    Book  Google Scholar 

  • Harte B (2010) Diamond formation in the deep mantle the record of mineral inclusions and their distribution in relation to mantle dehydration zone. Mineral Mag 74(2):180–215

    Article  Google Scholar 

  • Hong SM, Akaishi M, Yamaoka S (1999) Nucleation of diamonds in the system of carbon and water under very high pressure and temperature. J Cryst Growth 200:326–328. doi:10.1016/S0022-0248(98)01288-3

    Article  Google Scholar 

  • Huang WL, Wyllie PJ (1976) Melting relationships inCaO-CO2 and MgO-CO2 to 36 kilobars with comments on CO2 in the mantle. Earth Planet Sci Lett 40:129–132

    Google Scholar 

  • Irving AJ, Wyllie PJ (1975) Subsolidus and melting relationships for calcite, magnesite and join CaCO3-MgCO3 to 36 kb. Geochim Cosmochim Acta 39:35–53

    Article  Google Scholar 

  • Kaminsky F, Wirth R, Matsyuk S et al (2009) Nyerereite and nahcolite inclusions in diamond: evidence for lower-mantle carbonatitic magmas. Mineral Mag 73(5):797–816

    Article  Google Scholar 

  • Kaminsky FV, Wirth R, Schreiber A (2013) Carbonatitic inclusions in deep mantle diamond from Juina, Brazil: new minerals in the carbonate-halide association. Canad Mineral 140(6):734–753

    Google Scholar 

  • Karato S, Forte AM, Liebermann RC et al (2000) Earth’s deep interiors: mineral physics and tomography from the atomic to the global scale. Geophysics monograph series 117, p 289

    Google Scholar 

  • Katsura T, Ito E (1990) Melting and subslidus relations in the MgSiO3-MgCO3 system at high pressures: implications to evolution of the Earth’s atmosphere. Earth Planet Sci Lett 99:110–117

    Article  Google Scholar 

  • Kennedy GC, Wasserburg GJ, Heard HC, Newton RC (1962) The upper three-phase region in the system SiO2-H2O. Am J Sci 260:501–521

    Article  Google Scholar 

  • Keppler H, Audetat A (2005) Fluid-mineral interaction at high pressure. In: Miletich R (ed) Mineral behaviour at extreme conditions. Eoetvoes University Press, Budapest, pp 225–251

    Google Scholar 

  • Keshav S, Gudfinnsson GH, Presnall DC (2011) Melting phase relations of simplified carbonated peridotite at 12–26 GPa in the systems CaO–MgO–SiO2–CO2 and CaO–MgO–Al2O3–SiO2–CO2: highly calcic magmas in the transition zone of the Earth. J Petrol 32(11):2265–2291

    Article  Google Scholar 

  • Klein-BenDavid O, Logvinova AM, Schrauber M et al (2009) High-Mg carbonatitic microinclusions in some Yakutian diamonds—a new type of diamond-forming fluid. Lithos 112:648–659

    Article  Google Scholar 

  • Kurat G, Dobosi G (2000) Garnet and diopside-bearing diamondites (framesites). Mineral Petrol 69:143–159. doi:10.1007/s007100070018

    Article  Google Scholar 

  • Kuzyura AV, Litvin YA, Jeffrises T (2015) Interface partition coefficients of trace elements in carbonate-silicate parental media for diamonds and paragenetic inclusions (experiments at 7.0-8.5 GPa). Russ Geol Geophys 56:221–231

    Article  Google Scholar 

  • Lavina B, Dega P, Downs RT et al (2009) Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing transition. Geophys Res Lett 36:L23306. doi:10.1029/2009GL039652

    Article  Google Scholar 

  • Leost I, Stachel T, Brey GP et al (2003) Diamond formation and source carbonation: Mineral associations in diamonds from Namibia. Contrib Mineral Petrol 145:15–24

    Article  Google Scholar 

  • Liebermann RC, Schreiber E (1969) Critical geothermal gradients in the mantle. Earth Planet Sci Lett 7:77–81

    Article  Google Scholar 

  • Litasov KD, Ohtani E (2009) Solidus of carbonated peridotite in the system CaO-Al2O3- MgO-SiO2-Na2O-CO2 to the lower mantle depths. Phys Earth Planet Int 177:46–58

    Article  Google Scholar 

  • Litvin YA (1969) To the diamond origin problem. Zapiski Vsesoyuzn Mineralogich Obschestva 98(2):114–121

    Google Scholar 

  • Litvin YA (2003) Alkali-chloride components in growth processes of diamond under conditions of the upper mantle and high-pressure experiments. Dokl Akad Nauk 389(3):382–386

    Google Scholar 

  • Litvin YA (2007) High-pressure mineralogy of diamond genesis. In: Ohtani E (ed) Advances in high-pressure mineralogy. Geological Society of America Special paper 421, pp 83–103. doi:10.1130/2007.2421(06)

  • Litvin YA (2009) The physicochemical conditions of diamond formation in the mantle matter: experimental studies. Russ Geol Geophys 50(12):1188–1200

    Article  Google Scholar 

  • Litvin YA (2012) Experimental studies of physico-chemical conditions of natural diamond origin at the example of the system eclogite-carbonatite-sulfide-diamond. Geol Ore Depos 54(6):443–457

    Article  Google Scholar 

  • Litvin YA (2013) Physico-chemical conditions of syngenesis of diamond and heterogeneous inclusions in the carbonate-silicate parental melts (experimental study). Mineral J 35(2):5–24

    Google Scholar 

  • Litvin YA, Spivak AV (2003) Rapid growth of diamondite at the contact between graphite and carbonate melt: experiments at 7.5–8.5 GPa. Dokl Earth Sci 391A:888–891

    Google Scholar 

  • Litvin YA, Spivak AV (2004) Crystal growth of diamond at 5.5–8.5 GPa in carbonate- carbon melt-solutions being chemical analogues of natural diamond forming melts. Mater Sci Trans 84(3):27–34

    Google Scholar 

  • Litvin YA, Zharikov VA (1999) Primary fluid-carbonatite inclusions in diamond: experimental modeling in the system K2O-Na2O-CaO-MgO-FeO-CO2 as a diamond formation medium at 7–9 GPa. Dokl Earth Sci 367A:801–805

    Google Scholar 

  • Litvin YA, Zharikov VA (2000) Experimental modeling of diamond genesis: diamond crystallization in multicomponent carbonate-silicate melts at 5–7 GPa and 1200–1570 °C. Dokl Earth Sci 373:867–870

    Google Scholar 

  • Litvin YA, Chudinovskikh LT, Zharikov VA (1997) Experimental crystallization of diamond and graphite from alkali-carbonate melts at 7–11 GPa. Trans (Doklady) Russ Acad Sci Earth Sci Sect 355A(6):908–911

    Google Scholar 

  • Litvin YA, Chudinovskikh LT, Zharikov VA (1998) The seeded growth of diamond in the Na2Mg(CO3)2–K2Mg(CO3)2-C system at 8–10 GPa. Dokl Earth Sci 359A(3):464–466

    Google Scholar 

  • Litvin YA, Chudinovskikh LT, Saparin GV et al (1999) Diamonds of new alkaline carbonate-graphite HP syntheses: SEM morphology, CCL-SEM and CL spectroscopy studies. Diamond Relat Mater 8:267–272. doi:10.1016/S0925-9635(98)00318-5

    Article  Google Scholar 

  • Litvin YA, Jones AP, Beard AD et al (2001) Crystallization of diamond and syngenetic minerals in melts of diamondiferous carbonatites of the Chagatai Massif, Uzbekistan: experiment at 7.0 GPa. Dokl Earth Sci 381A:1066–1069

    Google Scholar 

  • Litvin YA, Butvina VG, Bobrov AV, Zharikov VA (2002) First synthesis of diamond in sulfide-carbon systems: the role of sulfides in diamond genesis. Dokl Akad Nauk 321:106–109

    Google Scholar 

  • Litvin YA, Spivak AV, Matveev YA (2003) Crystallization of diamond in the molten carbonate-silicate rocks of the Kokchetav metamorphic complex at 5.5–7.5 GPa. Geochem Int 11:1090–1098

    Google Scholar 

  • Litvin YA, Kurat G, Dobosi G (2005) Experimental study of diamondite formation in carbonate-silicate melts: a model approach to natural processes. Russ Geol Geophys 46(12):1285–1299

    Google Scholar 

  • Litvin YA, Litvin VY, Kadik AA (2008) Experimental characterization of diamond crystallization in melts of mantle silicate-carbonate-carbon systems at 7.0–8.5 GPa. Geochem Int 46(6):531–553

    Google Scholar 

  • Litvin YA, Vasiliev PG, Bobrov AV et al (2012) Parental media of natural diamonds and primary mineral inclusions in them: evidence from physicochemical experiment. Geochem Int 50(9):726–759

    Google Scholar 

  • Litvin YA, Spivak AV, Solopova NA, Dubrovinsky LS (2014) On origin of lower-mantle diamonds and their primary inclusions. Phys Earth Planet Int 228:176–185. doi:10.1016/j/pepi/2013.12.007

  • Logvinova AM, Wirth R, Fedorova EN, Sobolev NV (2008) Nanometre-sized mineral and fluid inclusions in cloudy Siberian diamonds: new insights on diamond formation. Eur J Mineral 20:317–331

    Article  Google Scholar 

  • Logvinova AM, Wirth R, Tomilenko AA et al (2011) Peculiarities of phase composition of nano-sized crystal-fluid inclusions in aллювиaльныx diamonds of North-Eastern Siberian platform. Russ Geol Geoph 52(11):1634–1648

    Google Scholar 

  • Martinez I, Zhang J, Reeder RJ (1996) In situ X-ray diffraction of aragonite and dolomite at high pressure and high temperature: evidence for dolomite break down to aragonite and magnesite. Amer Mineral 81:611–624

    Article  Google Scholar 

  • Murthy RV, Hall H (1972) The origin and composition of the Earth’s core. Phys Earth Planet Int 6:125–130

    Google Scholar 

  • Navon O (1991) High internal pressures in diamond fluid inclusions determined by infrared absorption. Nature 353:746–748. doi:10.1038/353746a0

    Article  Google Scholar 

  • Navon O (1999) Diamond formation in the Earth’s mantle. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of the VII international kimberlite conference: red roof design, Cape Town, vol 2, pp 584–604

    Google Scholar 

  • Palyanov YN, Sokol AG, Sobolev NV (2005) Experimental modeling of the mantle diamond-forming processes. Russ Geol Geophys 46(12):1290–1303

    Google Scholar 

  • Pineau F, Javoy M, Kornprobst J (1987) Primary igneous graphite in ultramafic xenoliths: II. Isotopic composition of the carbonaceous phases presented in xenoliths and host lava at Tissemt (Eggere, Algerian Sahara). J Petrol 28:313–332

    Article  Google Scholar 

  • Reisman A (1959) Heterogeneous equilibriain the system K2CO3–MgCO3. J Am Chem Soc 81:807–811

    Article  Google Scholar 

  • Ringwood AE (1966) Chemical evolution of the terrestrial planets. Geocim Cosmochim Acta 30:41–104

    Article  Google Scholar 

  • Ringwood AE (1975) Composition and petrology of the Earth’s Mantle. McGraw-Hill, New York, 618 p

    Google Scholar 

  • Safonov OG, Perchuk LL, Litvin YA (2007) Melting relations in the chloride-carbonate-silicate systems at high-pressure and the model for formation of alkali diamond-forming liquids in the upper mantle. Earth Planet Sci Lett 253:112–128

    Article  Google Scholar 

  • Santillan J, Williams Q (2004) A high-pressure infrared and X-ray study of FeCO3 and MnCO3: comparison with CaMg(CO3)2-dolomite. Phys Earth Planet Sci Lett 143:291–304. doi:10.1016/j.pepi.2003.06.007

    Article  Google Scholar 

  • Schrauder M, Navon O (1993) Solid carbon dioxide in a natural diamond. Nature 365:42–44

    Article  Google Scholar 

  • Schrauder M, Navon O (1994) Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochim Cosmochim Acta 58:761–771. doi:10.1016/0016-7037(94)90504-5

    Article  Google Scholar 

  • Shatskiy AF, Sharygin IS, Gavryushkin PN et al (2013a) The system K2CO3-MgCO3 at 6 GPa and 900–1450 °C. Am Miner 98:1593–1603

    Article  Google Scholar 

  • Shatskiy AF, Gavryushkin PN, Sharygin IS et al (2013b) Melting and subsolidus phase relations in the system Na2CO3–MgCO3 ± H2O at 6 GPa and the stability of Na2Mg(CO3)2 in the upper mantle. Am Miner 98:2172–2182

    Article  Google Scholar 

  • Shatskiy AF, Litasov KD, Palyanov YN (2015) Phase relations in carbonate systems at pressures and temperatures of lithospheric mantle: review of experimental data. Russ Geol Geophys 56(1–2):149–187

    Google Scholar 

  • Shen AH, Keppler H (1997) Direct observation of complete miscibility in the albite—H2O system. Nature 385:710–712

    Article  Google Scholar 

  • Shushkanova AV, Litvin YA (2008) Experimental evidence for liquid immiscibility in the model system CaCO3-pyrope-pyrrhotite at 7.0 GPa: the role of carbonatite and sulfide melts in diamond genesis. Canad Mineral 46:991–1005

    Article  Google Scholar 

  • Sobolev NV (1977) The deep-seated inclusions in kimberlites and the problem of the composition of the upper mantle. American Geophysical Union, Washington, DC, 304 p

    Google Scholar 

  • Sokol AG, Palyanov YN, Palyanova GA et al (2001) Diamond and graphite crystallization from C-O-H fluids under high pressure and high temperature conditions. Diam Relat Mater 10:2131–2136. doi:10.1016/S0935-9635(01)00491-5

  • Solopova NA, Litvin YA, Spivak AV et al (2013) Phase diagram of Na-carbonate, the alkaline component of growth media of the super-deep diamond. Dokl Earth Sci 453(1):1106–1109

    Article  Google Scholar 

  • Solopova NA, Dubrovinsky L, Spivak AV et al (2014) Melting and decomposition of MgCO3 at pressures up to 84 GPa. Phys Chem Miner 08. doi:10.1007/s00269-014-0701-1

  • Spivak AV, Litvin YA (2004) Diamond syntheses in multi-component carbonate-carbon melts of natural chemistry: elementary processes and properties. Diamond Relat Mater 13:482–487. doi:10.1016/j.diamond.2003.11.104

    Article  Google Scholar 

  • Spivak AV, Dubrovinsky LS, Litvin YA (2011) Congruent melting of calcium carbonate in a static experiment at 3500 К and 10-22 GPa: its role in the genesis of ultra-deep diamonds. Dokl Earth Sci 439(2):1171–1174

    Article  Google Scholar 

  • Spivak AV, Litvin YA, Ovsyannikov SV et al (2012) Stability and breakdown of Ca13CO3 melt associated with formation of 13C-diamond in high-pressure static experiments up to 43 GPa and 3900 K. J Solid State Chem 191:102–106

    Article  Google Scholar 

  • Spivak A, Solopova N, Cerantola V et al (2014) Raman study of MgCO3-FeCO3 carbonate solid solution at high pressures up to 55 GPa. Phys Chem Miner 41:633–638. doi:10.1007/s00269-014-0676-y

    Article  Google Scholar 

  • Spivak A, Solopova N, Dubrovinsky L, Litvin Y (2015a) Melting relations of multicomponent carbonate MgCO3–FeCO3–CaCO3–Na2CO3 system at 11–26 GPa: application to deeper mantle diamonds formation. Phys Chem Miner. doi:10.1007/s00269-015-0765-6

    Google Scholar 

  • Spivak AV, Solopova NA, Dubrovinsky LS, Litvin YA (2015b) The MgCO3–FeCO3–CaCO3–Na2CO3 system at 12–23 GPa: phase relations and significance for the genesis of super-deep diamonds. Dokl Earth Sci 464(1):946–950

    Article  Google Scholar 

  • Stacey FD (1992) Physics of the Earth, 3rd edn. Brookfield Press, Brisbane, p 514

    Google Scholar 

  • Stachel T, Harris JW, Brey GP (1998) Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania. Contrib Mineral Petrol 132:34–47. doi:10.1007/s004100050403

    Article  Google Scholar 

  • Stachel T, Brey G, Harris JW (2000) Kankan diamonds (Guines) I: from the lithosphere dawn to the transition zone. Contrib Mineral Petrol 140:1–15

    Article  Google Scholar 

  • Suito K, Namba J, Horikawa T et al (2001) Phase relations of CaCO3 at high pressure and high temperature. Am Miner 86:997–1002

    Article  Google Scholar 

  • Taniguchi T, Dobson D, Jones AP et al (1996) Synthesis of cubic diamond in the graphite-magnesium carbonate and graphite-K2Mg(CO3)2 systems at high pressure of 9–11 GPa region. J Mater Res 11:2622–2632

    Article  Google Scholar 

  • Tomlinson EL, Jones AP, Harris JW (2006) Co-existing fluid and silicate inclusions in mantle diamond. Earth Planet Sci Lett 250:581–595

    Article  Google Scholar 

  • Titkov SV, Gorshkov AI, Solodova YP et al (2006) Mineral microinclusions in cubic diamonds from the Yakutian deposits based on analytical electron microscopy data. Dokl Earth Sci 410:1106–1108

    Article  Google Scholar 

  • Tschauner O, Mao H, Hemley RJ (2001) New transformation of CO2 at high pressures and temperatures. Phys Rev Lett 87(7):075701–075704

    Article  Google Scholar 

  • Turekian K, Clark SP (1969) Inhomogeneous accumulation of the Earth from the primitive solar nebula. Earth Planet Sci Lett 6:346–348

    Article  Google Scholar 

  • Urey HC (1956) Diamonds, meteorites and the origin of the solar system. Asrtrophys J 124:623–637

    Article  Google Scholar 

  • Urey NC (1962) Evidence regarding the origin of the Earth. Geochim Cosmochim Acta 26:1–13

    Article  Google Scholar 

  • Wagner PA (1916) Graphite-bearing xenoliths from the Jagersfontein diamond pipe. Trans Geol Soc S Afr 19:54–56

    Google Scholar 

  • Wang A, Pasteris JD, Meyer HOA, Dele-Duboi ML (1996) Magnesite-bearing inclusion assemblage in natural diamond. Earth Planet Sci Lett 141:293–306. doi:10.1016/0012-821X(96)00053-2

    Article  Google Scholar 

  • Watson EB, Wood BJ, Carroll MR (1990) Distribution of fluids in the mantle. In: Menzies MA (ed) Continental mantle. Clarendon Press, Oxford, pp 111–125

    Google Scholar 

  • Weiss Y, Kessel R, Griffin WL et al (2009) A new model for the evolution of diamond-forming fluid: evidence from microinclusion-bearing diamonds from Kankan, Guinea. Lithos 112:660–674

    Article  Google Scholar 

  • Wirth R, Kaminsky FV, Matsyuk S, Schreiber A (2009) Unusual micro- and nano-inclusions in diamonds from Juina area, Brazil. Earth Planet Sci Lett 112:660–674

    Google Scholar 

  • Yamaoka S, Shaji Cumar MD, Kanda H, Akaishi M (2002) Formation of diamond from CaCO3 in a reduced C-O-H fluid at HP-HT. Diamond Relat Mater 11:1496–1504. doi:10.1016/S0925-9635(02)00053-5

    Article  Google Scholar 

  • Zedgenizov DA, Ragozin AL, Shatsky VS et al (2009) Mg and Fe-rich carbonate-silicate high- density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia). Lithos 112:638–647

    Google Scholar 

  • Zedgenizov DA, Ragozin AL, Shatsky VS et al (2011) Carbonate and silicate media of crystallization of fibrous diamonds from placers of north-easterh Siberian platform. Russ Geol Geophys 52(11):1649–1664

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy A. Litvin .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Litvin, Y.A. (2017). Strongly Compressed Carbonate Systems in Diamond Genesis. In: Genesis of Diamonds and Associated Phases. Springer Mineralogy. Springer, Cham. https://doi.org/10.1007/978-3-319-54543-1_3

Download citation

Publish with us

Policies and ethics