Skip to main content

Radiation Therapy for Liver Tumors: Future Directions

  • Chapter
  • First Online:
Radiation Therapy for Liver Tumors

Abstract

Radiation therapy for liver tumors has changed dramatically in the last few decades, from purely palliative to now potentially curative in the form of stereotactic body radiation therapy (SBRT). Recent progress with imaging suggests that prospective characterization of individual tumor subpopulations within these tumors may not only have prognostic value but also may allow personalized heterogeneous radiotherapy dosing. Improved on-board radiation treatment imaging strategies may lead to real-time adapted treatment tailored to the patient’s individual tumor and functional response. The future question is how best to optimize the power of SBRT both to ablate the local tumor and to potentially work with immune therapy agents to produce a systemic antitumor effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

RT:

Radiotherapy

HCC:

Hepatocellular

IHCC:

Intrahepatic Cholangiocarcinoma

SBRT:

Stereotactic Body Radiation Therapy

SABR:

Stereotactic Ablative Radiation Therapy

RILD:

Radiation-Induced Liver disease

FLR:

Future liver remnant

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Nonalcoholic steatohepatitis

CASH:

Chemotherapy-associated steatohepatitis

ICG:

Indocyanine green

SPECT:

Single-photon emission computed tomography

MRI:

Magnetic Resonance Imaging

miRNA:

MicroRNA

RSI:

Radiosensitivity index

CRC:

Those colorectal

OS:

Overall survival

BED:

Biologically effective dose

GTV:

Gross tumor volume

TACE:

Transarterial chemoembolization

TARE:

Transarterial radioembolization

SIRT:

Selective Internal Radiation Therapy

PFS:

Progression-free survival

VTR:

Virtual Tumor Resection

RFA:

Radiofrequency Ablation

References

  1. Wo JY, Dawson LA, Zhu AX, Hong TS. An emerging role for radiation therapy in the treatment of hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Surg Oncol Clin N Am. 2014;23(2):353–68.

    Article  PubMed  Google Scholar 

  2. Dawson LA. Overview: where does radiation therapy fit in the spectrum of liver cancer local-regional therapies? Semin Radiat Oncol. 2011;21(4):241–6.

    Article  PubMed  Google Scholar 

  3. Wahl DR, Stenmark MH, Tao Y, Pollom EL, Caoili EM, Lawrence TS, et al. Outcomes after stereotactic body radiotherapy or radiofrequency ablation for hepatocellular carcinoma. J Clin Oncol. 2016;34(5):452–9.

    Article  CAS  PubMed  Google Scholar 

  4. Tao R, Krishnan S, Bhosale PR, Javle MM, Aloia TA, Shroff RT, et al. Ablative radiotherapy doses lead to a substantial prolongation of survival in patients with inoperable intrahepatic cholangiocarcinoma: a retrospective dose response analysis. J Clin Oncol: official J Am Soc Clin Oncol. 2016;34(3):219–26.

    Article  CAS  Google Scholar 

  5. Rule W, Timmerman R, Tong L, Abdulrahman R, Meyer J, Boike T, et al. Phase I dose-escalation study of stereotactic body radiotherapy in patients with hepatic metastases. Ann Surg Oncol. 2011;18(4):1081–7.

    Article  PubMed  Google Scholar 

  6. Loo BW, Chang JY, Dawson LA, Kavanagh BD, Koong AC, Senan S, et al. Stereotactic ablative radiotherapy: what’s in a name? Pract Radiat Oncol. 2011;1(1):38–9.

    Article  PubMed  Google Scholar 

  7. Timmerman RD, Bizekis CS, Pass HI, Fong Y, Dupuy DE, Dawson LA, et al. Local surgical, ablative, and radiation treatment of metastases. CA Cancer J Clin. 2009;59(3):145–70.

    Article  PubMed  Google Scholar 

  8. Rusthoven KE, Kavanagh BD, Cardenes H, Stieber VW, Burri SH, Feigenberg SJ, et al. Multi-institutional phase I/II trial of stereotactic body radiation therapy for liver metastases. J Clin Oncol. 2009;27(10):1572–8.

    Article  PubMed  Google Scholar 

  9. Dawson LA, Ten Haken RK, Lawrence TS. Partial irradiation of the liver. Semin Radiat Oncol. 2001;11(3):240–6.

    Article  CAS  PubMed  Google Scholar 

  10. Dawson LA, Ten Haken RK. Partial volume tolerance of the liver to radiation. Semin Radiat Oncol. 2005;15(4):279–83.

    Article  PubMed  Google Scholar 

  11. Dawson LA, Eccles C, Craig T. Individualized image guided iso-NTCP based liver cancer SBRT. Acta Oncol. 2006;45(7):856–64.

    Article  PubMed  Google Scholar 

  12. Dawson LA, Normolle D, Balter JM, McGinn CJ, Lawrence TS, Ten Haken RK. Analysis of radiation-induced liver disease using the Lyman NTCP model. Int J Radiat Oncol Biol Phys. 2002;53(4):810–21.

    Article  PubMed  Google Scholar 

  13. Tanaka K, Shimada H, Matsuo K, Ueda M, Endo I, Togo S. Remnant liver regeneration after two-stage hepatectomy for multiple bilobar colorectal metastases. Eur J Surg Oncol. 2007;33(3):329–35.

    Article  CAS  PubMed  Google Scholar 

  14. Hemming AW, Reed AI, Howard RJ, Fujita S, Hochwald SN, Caridi JG, et al. Preoperative portal vein embolization for extended hepatectomy. Ann Surg. 2003;237(5):686–91; discussion 91–3.

    Google Scholar 

  15. Goh BK. Measured versus estimated total liver volume to preoperatively assess the adequacy of future liver remnant: which method should we use? Ann Surg. 2015;262(2):e72.

    Article  PubMed  Google Scholar 

  16. Noel CE, Parikh PJ, Spencer CR, Green OL, Hu Y, Mutic S, et al. Comparison of onboard low-field magnetic resonance imaging versus onboard computed tomography for anatomy visualization in radiotherapy. Acta Oncol. 2015;54(9):1474–82.

    Article  PubMed  Google Scholar 

  17. Mutic S, Dempsey JF. The ViewRay system: magnetic resonance-guided and controlled radiotherapy. Semin Radiat Oncol. 2014;24(3):196–9.

    Article  PubMed  Google Scholar 

  18. Wojcieszynski AP, Rosenberg SA, Brower JV, Hullett CR, Geurts MW, Labby ZE, et al. Gadoxetate for direct tumor therapy and tracking with real-time MRI-guided stereotactic body radiation therapy of the liver. Radiother Oncol: J Euro Soc Ther Radiol Oncol. 2016;118(2):416–8.

    Article  CAS  Google Scholar 

  19. Acharya S, Fischer-Valuck BW, Kashani R, Parikh P, Yang D, Zhao T, et al. Online magnetic resonance image guided adaptive radiation therapy: first clinical applications. Int J Radiat Oncol Biol Phys. 2016;94(2):394–403.

    Article  PubMed  Google Scholar 

  20. Green O, Hu Y, Noel C, Olsen J, Mutic S. Observation of radiation-induced tissue signal intensity changes with the first commercial MRI-guided IMRT system. Int J Radiat Oncol Biol Phys. 2012;84(3):S758–9.

    Article  Google Scholar 

  21. Hossain N, Kanwar P, Mohanty SR. A comprehensive updated review of pharmaceutical and nonpharmaceutical treatment for NAFLD. Gastroenterol Res Pract. 2016;2016:7109270.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Loomba R, Sanyal AJ. The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol. 2013;10(11):686–90.

    Article  CAS  PubMed  Google Scholar 

  23. Jahn D, Rau M, Wohlfahrt J, Hermanns HM, Geier A. Non-alcoholic steatohepatitis: from pathophysiology to novel therapies. Dig Dis. 2016;34(4):356–63.

    Article  PubMed  Google Scholar 

  24. Robinson SM, Wilson CH, Burt AD, Manas DM, White SA. Chemotherapy-associated liver injury in patients with colorectal liver metastases: a systematic review and meta-analysis. Ann Surg Oncol. 2012;19(13):4287–99.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vauthey JN, Pawlik TM, Ribero D, Wu TT, Zorzi D, Hoff PM, et al. Chemotherapy regimen predicts steatohepatitis and an increase in 90-day mortality after surgery for hepatic colorectal metastases. J Clin Oncol. 2006;24(13):2065–72.

    Article  CAS  PubMed  Google Scholar 

  26. Child CG, Turcotte JG. Surgery and portal hypertension. Major Probl Clin Surg. 1964;1:1–85.

    CAS  PubMed  Google Scholar 

  27. Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg. 1973;60(8):646–9.

    Article  CAS  PubMed  Google Scholar 

  28. Johnson PJ, Berhane S, Kagebayashi C, Satomura S, Teng M, Reeves HL, et al. Assessment of liver function in patients with hepatocellular carcinoma: a new evidence-based approach-the ALBI grade. J Clin Oncol. 2015;33(6):550–8.

    Article  PubMed  Google Scholar 

  29. Wang H, Feng M, Frey KA, Ten Haken RK, Lawrence TS, Cao Y. Predictive models for regional hepatic function based on 99mTc-IDA SPECT and local radiation dose for physiologic adaptive radiation therapy. Int J Radiat Oncol Biol Phys. 2013;86(5):1000–6.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cao Y, Wang H, Johnson TD, Pan C, Hussain H, Balter JM, et al. Prediction of liver function by using magnetic resonance-based portal venous perfusion imaging. Int J Radiat Oncol Biol Phys. 2013;85(1):258–63.

    Article  PubMed  Google Scholar 

  31. Hemming AW, Scudamore CH, Shackleton CR, Pudek M, Erb SR. Indocyanine green clearance as a predictor of successful hepatic resection in cirrhotic patients. Am J Surg. 1992;163(5):515–8.

    Article  CAS  PubMed  Google Scholar 

  32. McGuire SM, Marks LB, Yin FF, Das SK. A methodology for selecting the beam arrangement to reduce the intensity-modulated radiation therapy (IMRT) dose to the SPECT-defined functioning lung. Phys Med Biol. 2010;55(2):403–16.

    Article  CAS  PubMed  Google Scholar 

  33. Ponomaryova AA, Morozkin ES, Rykova EY, Zaporozhchenko IA, Skvortsova TE, Dobrodeev A, et al. Dynamic changes in circulating miRNA levels in response to antitumor therapy of lung cancer. Exp Lung Res. 2016;42(2):95–102.

    Article  CAS  PubMed  Google Scholar 

  34. Baffy G. MicroRNAs in Nonalcoholic Fatty Liver Disease. J Clin Med. 2015;4(12):1977–88.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mueller AK, Lindner K, Hummel R, Haier J, Watson DI, Hussey DJ. MicroRNAs and Their Impact on Radiotherapy for Cancer. Radiat Res. 2016.

    Google Scholar 

  36. Stenmark MH, Cao Y, Wang H, Jackson A, Ben-Josef E, Ten Haken RK, et al. Estimating functional liver reserve following hepatic irradiation: adaptive normal tissue response models. Radiother Oncol. 2014;111(3):418–23.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Eschrich S, Zhang H, Zhao H, Boulware D, Lee JH, Bloom G, et al. Systems biology modeling of the radiation sensitivity network: a biomarker discovery platform. Int J Radiat Oncol Biol Phys. 2009;75(2):497–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Torres-Roca JF. A molecular assay of tumor radiosensitivity: a roadmap towards biology-based personalized radiation therapy. Per Med. 2012;9(5):547–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ahmed KA, Fulp WJ, Berglund AE, Hoffe SE, Dilling TJ, Eschrich SA, et al. Differences Between Colon Cancer Primaries and Metastases Using a Molecular Assay for Tumor Radiation Sensitivity Suggest Implications for Potential Oligometastatic SBRT Patient Selection. Int J Radiat Oncol Biol Phys. 2015;92(4):837–42.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chang DT, Swaminath A, Kozak M, Weintraub J, Koong AC, Kim J, et al. Stereotactic body radiotherapy for colorectal liver metastases: a pooled analysis. Cancer. 2011;117(17):4060–9.

    Article  PubMed  Google Scholar 

  41. Jesinghaus M, Pfarr N, Endris V, Kloor M, Volckmar AL, Brandt R, et al. Genotyping of colorectal cancer for cancer precision medicine: results from the IPH Center for Molecular Pathology. Genes Chromosom Cancer. 2016;55(6):505–21.

    Article  CAS  PubMed  Google Scholar 

  42. Sveen A, Loes IM, Alagaratnam S, Nilsen G, Holand M, Lingjaerde OC, Sorbye H, Berg KCG, Horn A, Angelsen JH, Knappskog S. Intra-individual genetic heterogeneity among liver metastases in metastatic colorectal cancer. ASCO Ann Meet Proc 2016;34(4 suppl):555.

    Google Scholar 

  43. Stremitzer S, Stintzing S, Heinemann V, Zhang W, Yang D, Ning Y, Sunakawa Y, Sebio A, Yamauchi S, Matsusaka S, Parekh A . Variations in Y chromosome-related genes and clinical outcome in metastatic colorectal cancer. ASCO Ann Meet Proc 2015;33(3 suppl):634.

    Google Scholar 

  44. Russo M, Siravegna G, Blaszkowsky LS, Corti G, Crisafulli G, Ahronian LG, et al. Tumor Heterogeneity and Lesion-Specific Response to Targeted Therapy in Colorectal Cancer. Cancer Discov. 2016;6(2):147–53.

    Article  CAS  PubMed  Google Scholar 

  45. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–77.

    Article  PubMed  Google Scholar 

  46. Grove O, Berglund AE, Schabath MB, Aerts HJ, Dekker A, Wang H, et al. Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma. PLoS ONE. 2015;10(3):e0118261.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wibmer A, Hricak H, Gondo T, Matsumoto K, Veeraraghavan H, Fehr D, et al. Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur Radiol. 2015;25(10):2840–50.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kuo MD, Gollub J, Sirlin CB, Ooi C, Chen X. Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma. J Vasc Interv Radiol. 2007;18(7):821–31.

    Article  PubMed  Google Scholar 

  49. Tsien C, Cao Y, Chenevert T. Clinical applications for diffusion magnetic resonance imaging in radiotherapy. Semin Radiat Oncol. 2014;24(3):218–26.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Eccles CL, Haider EA, Haider MA, Fung S, Lockwood G, Dawson LA. Change in diffusion weighted MRI during liver cancer radiotherapy: preliminary observations. Acta Oncol. 2009;48(7):1034–43.

    Article  PubMed  Google Scholar 

  51. Kamel IR, Bluemke DA, Ramsey D, Abusedera M, Torbenson M, Eng J, et al. Role of diffusion-weighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma. AJR Am J Roentgenol. 2003;181(3):708–10.

    Article  PubMed  Google Scholar 

  52. Buijs M, Vossen JA, Hong K, Georgiades CS, Geschwind JF, Kamel IR. Chemoembolization of hepatic metastases from ocular melanoma: assessment of response with contrast-enhanced and diffusion-weighted MRI. AJR Am J Roentgenol. 2008;191(1):285–9.

    Article  PubMed  Google Scholar 

  53. Mannelli L, Kim S, Hajdu CH, Babb JS, Clark TW, Taouli B. Assessment of tumor necrosis of hepatocellular carcinoma after chemoembolization: diffusion-weighted and contrast-enhanced MRI with histopathologic correlation of the explanted liver. AJR Am J Roentgenol. 2009;193(4):1044–52.

    Article  PubMed  Google Scholar 

  54. ter Voert EG, Heijmen L, van Laarhoven HW, Heerschap A. In vivo magnetic resonance spectroscopy of liver tumors and metastases. World J Gastroenterol. 2011;17(47):5133–49.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Maris JM, Evans AE, McLaughlin AC, D’Angio GJ, Bolinger L, Manos H, et al. 31P nuclear magnetic resonance spectroscopic investigation of human neuroblastoma in situ. New Engl J Med. 1985;312(23):1500–5.

    Article  CAS  PubMed  Google Scholar 

  56. Meyerhoff DJ, Karczmar GS, Valone F, Venook A, Matson GB, Weiner MW. Hepatic cancers and their response to chemoembolization therapy. Quantitative image-guided 31P magnetic resonance spectroscopy. Invest Radiol. 1992;27(6):456–64.

    Article  CAS  PubMed  Google Scholar 

  57. Dixon RM. NMR studies of phospholipid metabolism in hepatic lymphoma. NMR Biomed. 1998;11(7):370–9.

    Article  CAS  PubMed  Google Scholar 

  58. Matsuo M, Matsumoto S, Mitchell JB, Krishna MC, Camphausen K. Magnetic resonance imaging of the tumor microenvironment in radiotherapy: perfusion, hypoxia, and metabolism. Semin Radiat Oncol. 2014;24(3):210–7.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lloyd MC, Cunningham JJ, Bui MM, Gillies RJ, Brown JS, Gatenby RA. Darwinian dynamics of intratumoral heterogeneity: not solely random mutations but also variable environmental selection forces. Cancer Res. 2016.

    Google Scholar 

  60. Finkelstein SE, Timmerman R, McBride WH, Schaue D, Hoffe SE, Mantz CA, et al. The confluence of stereotactic ablative radiotherapy and tumor immunology. Clin Dev Immunol. 2011;2011:439752.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Clausen MM, Hansen AE, Lundemann M, Hollensen C, Pommer T, Munck Af Rosenschöld P, et al. Dose painting based on tumor uptake of Cu-ATSM and FDG: a comparative study. Radiat Oncol. 2014;9:228.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Crane CH, Koay EJ. Solutions that enable ablative radiotherapy for large liver tumors: Fractionated dose painting, simultaneous integrated protection, motion management, and computed tomography image guidance. Cancer. 2016.

    Google Scholar 

  63. Prokopiou S, Moros EG, Poleszczuk J, Caudell J, Torres-Roca JF, Latifi K, et al. A proliferation saturation index to predict radiation response and personalize radiotherapy fractionation. Radiat Oncol. 2015;10:159.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bujold A, Massey CA, Kim JJ, Brierley J, Cho C, Wong RK, et al. Sequential phase I and II trials of stereotactic body radiotherapy for locally advanced hepatocellular carcinoma. J Clin Oncol: official J Am Soc Clin Oncol. 2013;31(13):1631–9.

    Article  Google Scholar 

  65. Lin CS, Jen YM, Chiu SY, Hwang JM, Chao HL, Lin HY, et al. Treatment of portal vein tumor thrombosis of hepatoma patients with either stereotactic radiotherapy or three-dimensional conformal radiotherapy. Jpn J Clin Oncol. 2006;36(4):212–7.

    Article  PubMed  Google Scholar 

  66. Yoon SM, Lim YS, Won HJ, Kim JH, Kim KM, Lee HC, et al. Radiotherapy plus transarterial chemoembolization for hepatocellular carcinoma invading the portal vein: long-term patient outcomes. Int J Radiat Oncol Biol Phys. 2012;82(5):2004–11.

    Article  PubMed  Google Scholar 

  67. Rim CH, Yang DS, Park YJ, Yoon WS, Lee JA, Kim CY. Effectiveness of high-dose three-dimensional conformal radiotherapy in hepatocellular carcinoma with portal vein thrombosis. Jpn J Clin Oncol. 2012;42(8):721–9.

    Article  PubMed  Google Scholar 

  68. Meng MB, Cui YL, Lu Y, She B, Chen Y, Guan YS, et al. Transcatheter arterial chemoembolization in combination with radiotherapy for unresectable hepatocellular carcinoma: a systematic review and meta-analysis. Radiother Oncol. 2009;92(2):184–94.

    Article  PubMed  Google Scholar 

  69. Brade AM, Ng S, Brierley J, Kim J, Dinniwell R, Ringash J, et al. Phase 1 trial of sorafenib and stereotactic body radiation therapy for hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2016;94(3):580–7.

    Article  CAS  PubMed  Google Scholar 

  70. Cuneo KC, Davis MA, Feng MU, Novelli PM, Ensminger WD, Lawrence TS. Low dose rate radiosensitization of hepatocellular carcinoma in vitro and in patients. Transl Oncol. 2014;7(4):472–8.

    Article  PubMed  PubMed Central  Google Scholar 

  71. van Hazel GA, Heinemann V, Sharma NK, Findlay MP, Ricke J, Peeters M, et al. SIRFLOX: Randomized phase III trial comparing first-line mFOLFOX6 (Plus or Minus Bevacizumab) versus mFOLFOX6 (Plus or Minus Bevacizumab) plus selective internal radiation therapy in patients with metastatic colorectal cancer. J Clin Oncol. 2016;34(15):1723–31.

    Article  PubMed  Google Scholar 

  72. Zeng J, Harris TJ, Lim M, Drake CG, Tran PT. Immune modulation and stereotactic radiation: improving local and abscopal responses. Biomed Res Int. 2013;2013:658126.

    PubMed  PubMed Central  Google Scholar 

  73. Tsuchiya N, Sawada Y, Endo I, Uemura Y, Nakatsura T. Potentiality of immunotherapy against hepatocellular carcinoma. World J Gastroenterol. 2015;21(36):10314–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kuang M, Peng BG, Lu MD, Liang LJ, Huang JF, He Q, et al. Phase II randomized trial of autologous formalin-fixed tumor vaccine for postsurgical recurrence of hepatocellular carcinoma. Clin Cancer Res. 2004;10(5):1574–9.

    Article  CAS  PubMed  Google Scholar 

  75. Takayama T, Sekine T, Makuuchi M, Yamasaki S, Kosuge T, Yamamoto J, et al. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet. 2000;356(9232):802–7.

    Article  CAS  PubMed  Google Scholar 

  76. Peng BG, Liang LJ, He Q, Kuang M, Lia JM, Lu MD, et al. Tumor vaccine against recurrence of hepatocellular carcinoma. World J Gastroenterol. 2005;11(5):700–4.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Grass GD, Krishna N, Kim S. The immune mechanisms of abscopal effect in radiation therapy. Curr Probl Cancer. 2016;40(1):10–24.

    Article  PubMed  Google Scholar 

  78. Golden EB, Chhabra A, Chachoua A, Adams S, Donach M, Fenton-Kerimian M, et al. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol. 2015;16(7):795–803.

    Article  CAS  PubMed  Google Scholar 

  79. Duffy AG, Makarova-Rusher OV, Pratt D, Kleiner DE, Fioravanti S, Walker M, Carey S, Figg WD, Steinberg SM, Anderson V, Levy E. A pilot study of AMP-224, a PD-L2 Fc fusion protein, in Combination with stereotactic body radiation therapy (SBRT) in patients with metastatic colorectal cancer. In ASCO Ann Meet Proc 2016;34(4 suppl):560.

    Google Scholar 

  80. Kimple RJ, Smith MA, Blitzer GC, Torres AD, Martin JA, Yang RZ, et al. Enhanced radiation sensitivity in HPV-positive head and neck cancer. Cancer Res. 2013;73(15):4791–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lee J, Poon I, Balogh J, Tsao M, Barnes E. A review of radiotherapy for merkel cell carcinoma of the head and neck. J Skin Cancer. 2012;2012:563829.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Frakes JM, Abuodeh Y, Naghavi A, Friedman M, Kim RD, Kothari N, El-Haddad G, Kis B, Biebel B, Sweeney J, Choi J. Viral hepatitis associated hepatocellular carcinoma outcomes with Y-90 radioembolization. ASCO Ann Meet Proc. 2016;34(4 suppl):414.

    Google Scholar 

  83. Meyer JJ, Foster RD, Lev-Cohain N, Yokoo T, Dong Y, Schwarz RE, et al. A phase I dose-escalation trial of single-fraction stereotactic radiation therapy for liver metastases. Ann Surg Oncol. 2016;23(1):218–24.

    Article  PubMed  Google Scholar 

  84. Zamboglou C, Messmer MB, Becker G, Momm F. Stereotactic radiotherapy in the liver hilum. Basis for future studies. Strahlenther Onkol. 2012;188(1):35–41.

    Article  CAS  PubMed  Google Scholar 

  85. Sterzing F, Brunner TB, Ernst I, Baus WW, Greve B, Herfarth K, et al. Stereotactic body radiotherapy for liver tumors: principles and practical guidelines of the DEGRO Working Group on Stereotactic Radiotherapy. Strahlenther Onkol. 2014;190(10):872–81.

    Article  PubMed  Google Scholar 

  86. Tse RV, Hawkins M, Lockwood G, Kim JJ, Cummings B, Knox J, et al. Phase I study of individualized stereotactic body radiotherapy for hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Clin Oncol. 2008;26(4):657–64.

    Article  PubMed  Google Scholar 

  87. Lee MT, Kim JJ, Dinniwell R, Brierley J, Lockwood G, Wong R, et al. Phase I study of individualized stereotactic body radiotherapy of liver metastases. J Clin Oncol. 2009;27(10):1585–91.

    Article  PubMed  Google Scholar 

  88. Lang H, Radtke A, Hindennach M, Schroeder T, FrĂ¼hauf NR, MalagĂ³ M, et al. Impact of virtual tumor resection and computer-assisted risk analysis on operation planning and intraoperative strategy in major hepatic resection. Arch Surg. 2005;140(7):629–38; discussion 38.

    Google Scholar 

  89. Yamanaka J, Saito S, Fujimoto J. Impact of preoperative planning using virtual segmental volumetry on liver resection for hepatocellular carcinoma. World J Surg. 2007;31(6):1249–55.

    Article  PubMed  Google Scholar 

  90. Skinner HD, Hong TS, Krishnan S. Charged-particle therapy for hepatocellular carcinoma. Semin Radiat Oncol. 2011;21(4):278–86.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wang X, Krishnan S, Zhang X, Dong L, Briere T, Crane CH, et al. Proton radiotherapy for liver tumors: dosimetric advantages over photon plans. Med Dosim: official J Am Assoc Med Dosim. 2008;33(4):259–67.

    Article  Google Scholar 

  92. Hong TS, DeLaney TF, Mamon HJ, Willett CG, Yeap BY, Niemierko A, et al. A prospective feasibility study of respiratory-gated proton beam therapy for liver tumors. Pract Radiat Oncol. 2014;4(5):316–22.

    Article  PubMed  Google Scholar 

  93. De Ruysscher D, Sterpin E, Haustermans K, Depuydt T. Tumour movement in proton therapy: solutions and remaining questions: a review. Cancers (Basel). 2015;7(3):1143–53.

    Article  Google Scholar 

  94. Chetty IJ, Martel MK, Jaffray DA, Benedict SH, Hahn SM, Berbeco R, et al. Technology for innovation in radiation oncology. Int J Radiat Oncol Biol Phys. 2015;93(3):485–92.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Bush DA, Smith JC, Slater JD, Volk ML, Reeves ME, Cheng J, et al. Randomized clinical trial comparing proton beam radiation therapy with transarterial chemoembolization for hepatocellular carcinoma: results of an interim analysis. Int J Radiat Oncol Biol Phys. 2016;95(1):477–82.

    Article  PubMed  Google Scholar 

  96. Hong TS, Wo JY, Yeap BY, Ben-Josef E, McDonnell EI, Blaszkowsky LS, et al. Multi-institutional phase II study of high-dose hypofractionated proton beam therapy in patients with localized, unresectable hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Clin Oncol: official J Am Soc Clin Oncol. 2016;34(5):460–8.

    Article  CAS  Google Scholar 

  97. Schardt D, Elsässer T, Schulz-Ertner D. Heavy-ion tumor therapy: Physical and radiobiological benefits. Rev Mod Phys. 2010;82(1):383.

    Article  Google Scholar 

  98. Komatsu S, Fukumoto T, Demizu Y, Miyawaki D, Terashima K, Sasaki R, et al. Clinical results and risk factors of proton and carbon ion therapy for hepatocellular carcinoma. Cancer. 2011;117(21):4890–904.

    Article  CAS  PubMed  Google Scholar 

  99. Tomlinson JS, Jarnagin WR, DeMatteo RP, Fong Y, Kornprat P, Gonen M, et al. Actual 10-year survival after resection of colorectal liver metastases defines cure. J Clin Oncol. 2007;25(29):4575–80.

    Article  PubMed  Google Scholar 

  100. Porter ME. What is value in health care? N Engl J Med. 2010;363(26):2477–81.

    Article  CAS  PubMed  Google Scholar 

  101. Kim H, Gill B, Beriwal S, Huq MS, Roberts MS, Smith KJ. Cost-effectiveness analysis of stereotactic body radiation therapy compared with radiofrequency ablation for inoperable colorectal liver metastases. Int J Radiat Oncol Biol Phys. 2016.

    Google Scholar 

  102. Wong SL, Mangu PB, Choti MA, Crocenzi TS, Dodd GD, Dorfman GS, et al. American society of clinical oncology 2009 clinical evidence review on radiofrequency ablation of hepatic metastases from colorectal cancer. J Clin Oncol. 2010;28(3):493–508.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. Mellon MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mellon, E.A., Murimwa, G., Hoffe, S.E. (2017). Radiation Therapy for Liver Tumors: Future Directions. In: Meyer, J., Schefter, T. (eds) Radiation Therapy for Liver Tumors. Springer, Cham. https://doi.org/10.1007/978-3-319-54531-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54531-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54530-1

  • Online ISBN: 978-3-319-54531-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics