Skip to main content

A Hybrid Convolutional Neural Network for Plankton Classification

  • Conference paper
  • First Online:
Book cover Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10118))

Included in the following conference series:

Abstract

Plankton are fundamental and essential to marine ecosystem, and its survey is significant for sustainable development and ecosystem balance of oceans. The large amount of plankton species and complex relationship among different classes bring difficulty for us to design an automatic plankton classification system. Thus, we develop our model based on convolutional neural network and aim to overcome these shortages. We consider two different ways to extract global and local features to describe shape and texture information of plankton. Furthermore, we design a pyramid fully connected structure to merge different inner products from each sub networks. The experimental results prove our model can take advantage of multiple features and performs better than original convolutional neural network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lalli, C., Parsons, T.R.: Biological Oceanography: An Introduction. Butterworth-Heinemann, New York (1997)

    Google Scholar 

  2. Sardet, C.: Plankton: Wonders of the Drifting World. University of Chicago Press, Chicago (2015)

    Book  Google Scholar 

  3. Reynaud, E.G. (ed.): Imaging Marine Life: Macrophotography and Microscopy Approaches for Marine Biology. Wiley, Hoboken (2013)

    Google Scholar 

  4. Davis, C.S., Thwaites, F.T., Gallager, S.M., Hu, Q.: A three-axis fast-tow digital video plankton recorder for rapid surveys of plankton taxa and hydrography. Limnolo.Ocean. Methods 3, 59–74 (2005)

    Article  Google Scholar 

  5. Jaffe, J.S., Roberts, P.L.D., Ratelle, D., Laxton, B., Orenstein, E., Carter, M., Hilbern, M.: Scripps plankton camera system (2015)

    Google Scholar 

  6. Orenstein, E.C., Beijbom, O., Peacock, E.E., Sosik, H.M.: Whoi-plankton-a large scale fine grained visual recognition benchmark dataset for plankton classification. arXiv preprint arXiv:1510.00745 (2015)

  7. Benfield, M.C., Grosjean, P., Culverhouse, P.F., Irigoien, X., Sieracki, M.E., Lopez-Urrutia, A., Dam, H.G., Hu, Q., Davis, C.S., Hansen, A., Pilskaln, C.H., Riseman, E.M., Schultz, H., Utgoff, P.E., Gorsky, G.: RAPID: research on automated plankton identification. Oceanography 20, 172–187 (2007)

    Article  Google Scholar 

  8. MacLeod, N., Benfield, M., Culverhouse, P.: Time to automate identification. Nature 467, 154–155 (2010)

    Article  Google Scholar 

  9. Erickson, J.S., Hashemi, N., Sullivan, J.M., Weidemann, A.D., Ligler, F.S.: In situ phytoplankton analysis: theres plenty of room at the bottom. Anal. Chem. 84, 839–850 (2011)

    Article  Google Scholar 

  10. Samson, S., Hopkins, T., Remsen, A., Langebrake, L., Sutton, T., Patten, J.: A system for high-resolution zooplankton imaging. IEEE J. Ocean. Eng. 26, 671–676 (2001)

    Article  Google Scholar 

  11. Tang, X., Stewart, W.K., Vincent, L., Huang, H., Marra, M., Gallager, S.M., Davis, C.S.: Automatic plankton image recognition. Artif. Intell. Biol. Agric. 12, 177–199 (1998)

    Article  MATH  Google Scholar 

  12. Tang, X., Lin, F., Samson, S., Remsen, A.: Binary plankton image classification. IEEE J. Ocean.Eng. 31, 728–735 (2006)

    Article  Google Scholar 

  13. Grosjean, P., Picheral, M., Warembourg, C., Gorsky, G.: Enumeration, measurement, and identification of net zooplankton samples using the zooscan digital imaging system. ICES J. Mar. Sci. J. Conseil 61, 518–525 (2004)

    Article  Google Scholar 

  14. Gorsky, G., Ohman, M.D., Picheral, M., Gasparini, S., Stemmann, L., Romagnan, J.B., Cawood, A., Pesant, S., García-Comas, C., Prejger, F.: Digital zooplankton image analysis using the zooscan integrated system. J. Plankton Res. 32, 285–303 (2010)

    Article  Google Scholar 

  15. Sosik, H.M., Olson, R.J.: Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry. Limnol. Oceanogr. Methods 5, 204–216 (2007)

    Article  Google Scholar 

  16. Buf, H., Bayer, M.M.: Automatic Diatom Identification. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  17. Culverhouse, P.F., Williams, R., Reguera, B., Herry, V., González-Gil, S.: Do experts make mistakes? A comparison of human and machine identification of dinoflagellates. Mar. Ecol. Prog. Ser. 247, 17–25 (2003)

    Article  Google Scholar 

  18. Khosla, A., Jayadevaprakash, N., Yao, B., Li, F.F.: Novel dataset for fine-grained image categorization: stanford dogs. In: Proceedings of CVPR Workshop on Fine-Grained Visual Categorization (FGVC) (2011)

    Google Scholar 

  19. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  20. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)

    Google Scholar 

  22. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10590-1_53

    Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  24. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193–202 (1980)

    Article  MATH  Google Scholar 

  25. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989)

    Article  Google Scholar 

  26. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  27. Zheng, H., Zhao, H., Sun, X., Gao, H., Ji, G.: Automatic setae segmentation from chaetoceros microscopic images. Microsc. Res. Tech. 77, 684–690 (2014)

    Article  Google Scholar 

  28. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: 1998 Sixth International Conference on Computer Vision, pp. 839–846. IEEE (1998)

    Google Scholar 

  29. Scharr, H.: Optimal operators in digital image processing. Ph.D. thesis (2000)

    Google Scholar 

  30. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)

    Article  Google Scholar 

  31. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  32. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61271406, 61301240, and the Fundamental Research Funds for the Central Universities under Grant No. 201562023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyong Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Dai, J., Yu, Z., Zheng, H., Zheng, B., Wang, N. (2017). A Hybrid Convolutional Neural Network for Plankton Classification. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10118. Springer, Cham. https://doi.org/10.1007/978-3-319-54526-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54526-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54525-7

  • Online ISBN: 978-3-319-54526-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics