Skip to main content

Methods and Techniques for Measurements in the Internet

  • Chapter
  • First Online:
Performance Evaluation for Network Services, Systems and Protocols
  • 668 Accesses

Abstract

An in-depth understanding of the Internet traffic mix is of paramount importance for network management tasks, such as optimizing the underlying infrastructure for emerging applications. However, the Internet traffic mix changes over time and is very complex when it comes to measurements and classification techniques. Its traffic profile also changes depending on the measurement points [1]. Although there is no de facto way to perform measurements on the Internet, there are good IETF documents that highlight some important elements in this context [2, 3]. However, as the Internet evolves at a fast pace, it is hard to have a general measurement framework that covers all aspects of the future Internet [4]. One clear example is the recent rise of virtualization technologies in computer networking. Virtualization techniques are bringing a new set of challenges from the point of view of the measurement process (cf. Sect. 2.5).

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-3-319-54521-9_6

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.caida.org/tools/measurement/scamper/.

  2. 2.

    http://svnet.u-strasbg.fr/mrinfo/mrinfo.man.html.

  3. 3.

    http://inl.info.ucl.ac.be/softwares/igen.

  4. 4.

    https://github.com/rhysbowden/COLD.

  5. 5.

    https://github.com/rhysbowden/COLD.

  6. 6.

    http://www.caida.org/data/internet-topology-data-kit/index.xml.

  7. 7.

    http://topology-zoo.org/index.html.

  8. 8.

    https://wiki.xen.org/wiki/Network_Throughput_and_Performance_Guide.

  9. 9.

    http://software.internet2.edu/owamp/.

References

  1. Richter, Philipp, et al. 2015. Distilling the Internet’s Application Mix from Packet-Sampled Traffic. International Conference on Passive and Active Network Measurement. Springer International Publishing.

    Google Scholar 

  2. Brownlee, N., C. Mills, and G. Ruth. 1999. RFC 2722-Traffic Flow Measurement. Architecture 10.

    Google Scholar 

  3. Mills, C., D. Hirsh, and G. R. Ruth. 1991. RFC 1272: Internet Accounting: Background . RFC, Network Working Group.

    Google Scholar 

  4. Claffy, K.C. 2000. Measuring the internet. IEEE Internet Computing 4 (1): 73–75.

    Article  Google Scholar 

  5. Zseby, Tanja. 2005. Statistical sampling for non intrusive measurements in IP networks. PhD diss., Berlin Institute of Technology.

    Google Scholar 

  6. Paxson, Vern, et al. 1998. RFC 2330: Framework for IP Performance Metrics.

    Google Scholar 

  7. Morton, A. 2016. Active and Passive Metrics and Methods (with Hybrid Types In-Between). No. RFC 7799.

    Google Scholar 

  8. Clark, A., and B. Claise. 2011. Framework for Performance Metric Development. RFC 6390, October.

    Google Scholar 

  9. Recommendation, I. T. U. T. 2016. Internet protocol data communication service-IP packet transfer and availability performance parameters.

    Google Scholar 

  10. Zheng, L., Elkins, N., Lingli, D., Ackermann, M., and G. Mirsky. 2015. Framework for IP Passive Performance Measurements. Work in Progress, draft-zheng-ippm-framework-passive-03, June.

    Google Scholar 

  11. Bajpai, Vaibhav, and Jürgen Schönwälder. 2015. A survey on internet performance measurement platforms and related standardization efforts. IEEE Communications Surveys & Tutorials 17 (3): 1313–1341.

    Article  Google Scholar 

  12. Bagnulo, Marcelo, et al. 2014. Building a standard measurement platform. IEEE Communications Magazine 52 (5): 165–173.

    Article  Google Scholar 

  13. ———. 2013. Standardizing large-scale measurement platforms. ACM SIGCOMM Computer Communication Review 43 (2): 58–63.

    Article  Google Scholar 

  14. Biersack, Ernst, Christian Callegari, and Maja Matijasevic. 2013. Data Traffic Monitoring and Analysis. Berlin/Heidelberg: Springer.

    Book  Google Scholar 

  15. Alshammari, Riyad, and A. Nur Zincir-Heywood. 2015. How Robust Can a Machine Learning Approach Be for Classifying Encrypted VoIP? Journal of Network and Systems Management 23 (4): 830–869.

    Article  Google Scholar 

  16. Shahbar, Khalid, and A. Nur Zincir-Heywood. 2014. Benchmarking two techniques for Tor classification: Flow level and circuit level classification. Computational Intelligence in Cyber Security (CICS), 2014 IEEE Symposium on. IEEE.

    Google Scholar 

  17. RRDtool. Accessed Sept 2016. http://oss.oetiker.ch/rrdtool/.

  18. Karagiannis, Thomas, et al. 2004. Is p2p dying or just hiding?[p2p traffic measurement]. Global Telecommunications Conference, 2004. GLOBECOM'04. IEEE. Vol. 3. IEEE.

    Google Scholar 

  19. Nguyen, T.T. Thuy, and Grenville Armitage. 2008. A survey of techniques for internet traffic classification using machine learning. IEEE Communications Surveys & Tutorials 10 (4): 56–76.

    Article  Google Scholar 

  20. Sommer, Robin, and Vern Paxson. 2010. Outside the closed world: On using machine learning for network intrusion detection. 2010 IEEE Symposium on Security and Privacy. IEEE.

    Google Scholar 

  21. Park, Kihong, and Walter Willinger, eds. 2000. Self-similar network traffic and performance evaluation. New York: Wiley.

    Google Scholar 

  22. Leland, Will E., et al. 1994. On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Transactions on networking 2 (1): 1–15.

    Article  Google Scholar 

  23. Endace. The Genius of DAG. http://www.endace.com/endace-dag-high-speed-packet-capture-cards.html. Accessed Sept 2016.

  24. Fernandes, Stenio, et al. 2008. A stratified traffic sampling methodology for seeing the big picture. Computer Networks 52 (14): 2677–2689.

    Article  MATH  Google Scholar 

  25. Zseby, Tanja, Thomas Hirsch, and Benoit Claise. 2008. Packet sampling for flow accounting: Challenges and limitations. In International Conference on Passive and Active Network Measurement. Berlin/Heidelberg: Springer.

    Google Scholar 

  26. Das, Gautam, et al. 2008. Efficient sampling of information in social networks. Proceedings of the 2008 ACM Workshop on Search in Social Media. ACM.

    Google Scholar 

  27. Bartos, Karel, and Martin Rehak. 2012. Towards efficient flow sampling technique for anomaly detection. International Workshop on Traffic Monitoring and Analysis. Berlin/Heidelberg: Springer.

    Google Scholar 

  28. ———. 2015. IFS: Intelligent flow sampling for network security–an adaptive approach. International Journal of Network Management 25 (5): 263–282.

    Article  Google Scholar 

  29. Willinger, Walter, Vern Paxson, and Murad S. Taqqu. 1998. Self-similarity and heavy tails: Structural modeling of network traffic. A Practical Guide to Heavy Tails: Statistical Techniques and Applications 23: 27–53.

    MATH  Google Scholar 

  30. Hernandez, Edwin A., Matthew C. Chidester, and Alan D. George. 2001. Adaptive sampling for network management. Journal of Network and Systems Management 9 (4): 409–434.

    Article  Google Scholar 

  31. Duffield, Nick, Carsten Lund, and Mikkel Thorup. 2005. Learn more, sample less: Control of volume and variance in network measurement. IEEE Transactions on Information Theory 51 (5): 1756–1775.

    Article  MathSciNet  MATH  Google Scholar 

  32. ———. 2002. Properties and prediction of flow statistics from sampled packet streams. Proceedings of the 2nd ACM SIGCOMM Workshop on Internet Measurment. ACM.

    Google Scholar 

  33. Duffield, Nick, and Carsten Lund. 2003. Predicting resource usage and estimation accuracy in an IP flow measurement collection infrastructure. Proceedings of the 3rd ACM SIGCOMM Conference on Internet Measurement. ACM.

    Google Scholar 

  34. Kompella, Ramana Rao, and Cristian Estan. 2005. The power of slicing in internet flow measurement. Proceedings of the 5th ACM SIGCOMM Conference on Internet Measurement. USENIX Association.

    Google Scholar 

  35. Alderson, David, et al. 2005. Understanding internet topology: Principles, models, and validation. IEEE/ACM Transactions on Networking 13 (6): 1205–1218.

    Article  Google Scholar 

  36. Willinger, Walter, and Matthew Roughan. 2013. Internet topology research redux. ACM SIGCOMM eBook: Recent Advances in Networking.

    Google Scholar 

  37. Siganos, Georgos, et al. 2003. Power laws and the AS-level internet topology. IEEE/ACM Transactions on Networking (TON) 11 (4): 514–524.

    Article  Google Scholar 

  38. Barabási, Albert-László, and Réka Albert. 1999. Emergence of scaling in random networks. Science 286 (5439): 509–512.

    Article  MathSciNet  MATH  Google Scholar 

  39. Roughan, Matthew, et al. 2011. 10 lessons from 10 years of measuring and modeling the internet's autonomous systems. IEEE Journal on Selected Areas in Communications 29 (9): 1810–1821.

    Article  Google Scholar 

  40. Doyle, John C., et al. 2005. The “robust yet fragile” nature of the Internet. Proceedings of the National Academy of Sciences of the United States of America 102 (41): 14497–14502.

    Article  Google Scholar 

  41. Willinger, Walter, David Alderson, and John C. Doyle. 2009. Mathematics and the internet: A source of enormous confusion and great potential. Notices of the AMS 56 (5): 586–599.

    MathSciNet  MATH  Google Scholar 

  42. Doar, Matthew B. 1996. A better model for generating test networks. Global Telecommunications Conference, 1996. GLOBECOM'96.'Communications: The Key to Global Prosperity. IEEE.

    Google Scholar 

  43. Calvert, Kenneth L., Matthew B. Doar, and Ellen W. Zegura. 1997. Modeling internet topology. IEEE Communications magazine 35 (6): 160–163.

    Article  Google Scholar 

  44. Donnet, Benoit, and Timur Friedman. 2007. Internet topology discovery: A survey. IEEE Communications Surveys & Tutorials 9 (4): 56–69.

    Article  Google Scholar 

  45. Trajkovic, Ljiljana. 2010. Analysis of Internet topologies. IEEE Circuits and Systems Magazine 10 (3): 48–54.

    Article  Google Scholar 

  46. Shavitt, Yuval, and Udi Weinsberg. 2011. Quantifying the importance of vantage point distribution in internet topology mapping (extended version). IEEE Journal on Selected Areas in Communications 29 (9): 1837–1847.

    Article  Google Scholar 

  47. Motamedi, Reza, Reza Rejaie, and Walter Willinger. 2015. A Survey of Techniques for Internet Topology Discovery. IEEE Communications Surveys & Tutorials 17 (2): 1044–1065.

    Article  Google Scholar 

  48. Wang, Xiaoming, and Dmitri Loguinov. 2006. Wealth-Based Evolution Model for the Internet AS-Level Topology. INFOCOM.

    Google Scholar 

  49. Rekhter, Y., and T. Li. 1995. RFC 1771. A Border Gateway Protocol 4: 1–54.

    Google Scholar 

  50. Hares, S., and Y. Rekhter. T. Li. 2006. A Border Gateway Protocol 4 (BGP-4). RFC 4271.

    Google Scholar 

  51. Hawkinson, J. and Bates, T., 1996. Guidelines for creation, selection, and registration of an Autonomous System (AS). RFC 1930.

    Google Scholar 

  52. Rasti, Amir H., et al. 2010. Eyeball ASes: From geography to connectivity. Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement. ACM.

    Google Scholar 

  53. CAIDA Data. AS to Organizations. https://www.caida.org/data/as-organizations.

  54. Pansiot, Jean-Jacques, et al. 2010. Extracting intra-domain topology from mrinfo probing. In International Conference on Passive and Active Network Measurement. Berlin/Heidelberg: Springer.

    Google Scholar 

  55. Luckie, Matthew. 2010. Scamper: A scalable and extensible packet prober for active measurement of the internet. Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement. ACM.

    Google Scholar 

  56. Mérindol, Pascal, et al. 2011. MERLIN: MEasure the router level of the INternet. Next Generation Internet (NGI), 2011 7th EURO-NGI Conference on. IEEE.

    Google Scholar 

  57. Quoitin, Bruno, et al. 2009. IGen: Generation of router-level Internet topologies through network design heuristics. Teletraffic Congress, 2009. ITC 21 2009. 21st International. IEEE.

    Google Scholar 

  58. Bowden, Rhys, Matthew Roughan, and Nigel Bean. 2014. COLD: PoP-level Network Topology Synthesis. Proceedings of the 10th ACM International on Conference on Emerging Networking Experiments and Technologies. ACM.

    Google Scholar 

  59. Coutinho, Emanuel Ferreira, et al. 2015. Elasticity in cloud computing: A survey. Annals of Telecommunications-Annales Des Télécommunications 70 (7–8): 289–309.

    Article  Google Scholar 

  60. Whiteaker, Jon, Fabian Schneider, and Renata Teixeira. 2011. Explaining packet delays under virtualization. ACM SIGCOMM Computer Communication Review 41 (1): 38–44.

    Article  Google Scholar 

  61. Shea, Ryan, et al. 2014. A deep investigation into network performance in virtual machine based cloud environments. IEEE INFOCOM 2014-IEEE Conference on Computer Communications. IEEE.

    Google Scholar 

  62. Xu, Fei, et al. 2014. Managing performance overhead of virtual machines in cloud computing: A survey, state of the art, and future directions. Proceedings of the IEEE 102 (1): 11–31.

    Article  Google Scholar 

  63. Callegati, F.; Cerroni, W.; Contoli, C.; Santandrea, G., Performance of Network Virtualization in cloud computing infrastructures: The OpenStack case. Cloud Networking (CloudNet), 2014 IEEE 3rd International Conference on, vol., no., pp.132–137, 8–10 Oct 2014.

    Google Scholar 

  64. Chauhan, Maneesh. 2014. Measurement and analysis of networking performance in virtualised environments. MSc thesis.

    Google Scholar 

  65. Jayasinghe, Deepal, et al. 2014. Variations in performance and scalability: An experimental study in IaaS clouds using multi-tier workloads. IEEE Transactions on Services Computing 7 (2): 293–306.

    Article  Google Scholar 

  66. Crisan, Daniel, et al. 2014. Datacenter applications in virtualized networks: A cross-layer performance study. IEEE Journal on Selected Areas in Communications 32 (1): 77–87.

    Article  Google Scholar 

  67. Persico, Valerio, et al. 2015. Measuring Network Throughput in the Cloud: The case of Amazon EC2. Computer Networks 93: 408–422.

    Article  Google Scholar 

  68. BMWG – Informational Draft.

    Google Scholar 

  69. Morton. Al, 2016. Considerations for benchmarking virtual network functions and their infrastructure. Work in Progress, August.

    Google Scholar 

  70. Fabini, Joachim, and Tanja Zseby. 2015. M2M communication delay challenges: Application and measurement perspectives. 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings. IEEE.

    Google Scholar 

  71. Huang et al. 2015. Benchmarking methodology for virtualization network performance. Working in Progress, October

    Google Scholar 

  72. Whiteaker, Jon, Fabian Schneider, and Renata Teixeira. 2011. Explaining packet delays under virtualization. ACM SIGCOMM Computer Communication Review 41 (1): 38–44.

    Article  Google Scholar 

  73. Dovrolis, Constantinos, Parameswaran Ramanathan, and David Moore. 2004. Packet-dispersion techniques and a capacity-estimation methodology. IEEE/ACM Transactions On Networking 12 (6): 963–977.

    Article  Google Scholar 

  74. Kapoor, Rohit, et al. 2004. CapProbe: A simple and accurate capacity estimation technique. ACM SIGCOMM Computer Communication Review 34 (4): 67–78.

    Article  Google Scholar 

  75. Ribeiro, Vinay Joseph, et al. 2003. Pathchirp: Efficient available bandwidth estimation for network paths. Passive and active measurement workshop.

    Google Scholar 

  76. Wang, Han, et al. 2014. Timing is everything: Accurate, minimum overhead, available bandwidth estimation in high-speed wired networks. Proceedings of the 2014 Conference on Internet Measurement Conference. ACM.

    Google Scholar 

  77. Zhang, Ertong. 2015. Bandwidth Estimation for Virtual Networks. Computer Science and Engineering: Theses, Dissertations, and Student Research. PhD thesis, University of Nebraska-Lincoln, Paper 95.

    Google Scholar 

  78. Zhang, Ertong, and Lisong Xu. 2014. Network Path Capacity Comparison without Accurate Packet Time Information. 2014 IEEE 22nd International Conference on Network Protocols. IEEE.

    Google Scholar 

  79. Spring, Neil, et al. 2004. Measuring ISP topologies with Rocketfuel. IEEE/ACM Transactions on Networking 12 (1): 2–16.

    Article  Google Scholar 

  80. Knight, Simon, et al. 2011. The internet topology zoo. IEEE Journal on Selected Areas in Communications 29 (9): 1765–1775.

    Article  Google Scholar 

  81. Durairajan, Ramakrishnan, et al. 2013. Internet atlas: A geographic database of the internet. Proceedings of the 5th ACM Workshop on HotPlanet. ACM.

    Google Scholar 

  82. The CAIDA UCSD Internet Topology Data Kit - <03/2016>, http://www.caida.org/data/internet-topology-data-kit.

  83. Xen’s Network Throughput and Performance Guide, https://wiki.xen.org/wiki/Network_Throughput_and_Performance_Guide. Accessed Sept 2016.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fernandes, S. (2017). Methods and Techniques for Measurements in the Internet. In: Performance Evaluation for Network Services, Systems and Protocols . Springer, Cham. https://doi.org/10.1007/978-3-319-54521-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54521-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54519-6

  • Online ISBN: 978-3-319-54521-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics