Skip to main content

The Stability of the Isoperimetric Inequality

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2179))

Abstract

These lecture notes contain the material that I presented in two summer courses in 2013, one at the Carnegie Mellon University and the other one in a CIME school at Cetraro. The aim of both courses was to give a quick but comprehensive introduction to some recent results on the stability of the isoperimetric inequality.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E. Acerbi, N. Fusco, M. Morini, Minimality via second variation for a nonlocal isoperimetric problem. Commun. Math. Phys. 322, 515–557 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. A.D. Aleksandrov, Uniqueness theorems for surfaces in the large. V, (Russian) Vestn. Leningr. Univ. 13, 5–8 (1958)

    Google Scholar 

  3. A. Alvino, V. Ferone, C. Nitsch, A sharp isoperimetric inequality in the plane. J. Eur. Math. Soc. 13, 185–206 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems (Oxford University Press, Oxford, 2000)

    MATH  Google Scholar 

  5. M. Barchiesi, A. Brancolini, V. Julin, Sharp dimension free quantitative estimates for the Gaussian isoperimetric inequality. Ann. Probab. (2015, to appear). arXiv:1409.2106v1

    Google Scholar 

  6. M. Barchiesi, F. Cagnetti, N. Fusco, Stability of the Steiner symmetrization of convex sets. J. Eur. Math. Soc. 15, 1245–1278 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Barchiesi, G.M. Capriani, N. Fusco, G. Pisante, Stability of Pólya-Szegö inequality for log-concave functions. J. Funct. Anal. 267, 2264–2297 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Bernstein, Über die isoperimetriche Eigenschaft des Kreises auf der Kugeloberflache und in der Ebene. Math. Ann. 60, 117–136 (1905)

    Article  MathSciNet  MATH  Google Scholar 

  9. V. Bögelein, F. Duzaar, N. Fusco, A sharp quantitative isoperimetric inequality in higher codimension. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26, 309–362 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. V. Bögelein, F. Duzaar, N. Fusco, A quantitative isoperimetric inequality on the sphere. Adv. Calc. Var., to appear. Also available at http://cvgmt.sns.it/paper/2146/

  11. T. Bonnesen, Über die isoperimetrische Defizit ebener Figuren. Math. Ann. 91, 252–268 (1924)

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Brasco, G. De Philippis, B. Velichkov, Faber-Krahn inequalities in sharp quantitative form. Duke Math. J. 164, 1777–1831 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Brasco, A. Pratelli, Sharp stability of some spectral inequalities. Geom. Funct. Anal. 22, 107–135 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44, 375–417 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Y.D. Burago, V.A. Zalgaller, Geometric Inequalities (Springer, Berlin, 1988)

    Book  MATH  Google Scholar 

  16. X. Cabré, Partial differential equations, geometry and stochastic control, (Catalan) Butll. Soc. Catalana Mat. 15, 7–27 (2000)

    MathSciNet  Google Scholar 

  17. F. Cagnetti, M. Colombo, G. De Philippis, F. Maggi, Rigidity of equality cases in Steiner’s perimeter inequality. Anal. PDE 7, 1535–1593 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. E.A. Carlen, A. Figalli, Stability for a GNS inequality and the log-HLS inequality, with application to the critical mass Keller-Segel equation. Duke Math. J. 162, 579–625 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Chlebík, A. Cianchi, N. Fusco, The perimeter inequality under Steiner symmetrization: cases of equality. Ann. Math. 162, 525–555 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Cianchi, L. Esposito, N. Fusco, C. Trombetti, A quantitative Pólya-Szegö principle. J. Reine Angew. Math. 614, 153–189 (2008)

    MathSciNet  MATH  Google Scholar 

  21. A. Cianchi, N. Fusco, F. Maggi, A. Pratelli, The sharp Sobolev inequality in quantitative form. J. Eur. Math. Soc. 11, 1105–1139 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Cianchi, N. Fusco, F. Maggi, A. Pratelli, On the isoperimetric deficit in the Gauss space. Am. J. Math. 133, 131–186 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Cicalese, G.P. Leonardi, A selection principle for the sharp quantitative isoperimetric inequality. Arch. Rat. Mech. Anal. 206, 617–643 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Cicalese, G.P. Leonardi, Best constants for the isoperimetric inequality in quantitative form. J. Eur. Math. Soc. 15, 1101–1129 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Cicalese, G.P. Leonardi, F. Maggi, Sharp stability inequalities for planar double-bubbles (2012). arXiv:1211.3698v2

    Google Scholar 

  26. B. Dacorogna, C.E. Pfister, Wulff theorem and best constant in Sobolev inequality. J. Math. Pures Appl. 71, 97–118 (1992)

    MathSciNet  MATH  Google Scholar 

  27. E. De Giorgi, Sulla proprietà isoperimetrica dell’ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. Sez. I 8, 33–44 (1958)

    MATH  Google Scholar 

  28. E. De Giorgi, in Selected Papers, ed. by L. Ambrosio, G. Dal Maso, M. Forti, S. Spagnolo (Springer, New York, 2005)

    Google Scholar 

  29. L.C. Evans, R.F. Gariepy, Lecture Notes on Measure Theory and Fine Properties of Functions (CRC Press, Boca Raton, 1992)

    MATH  Google Scholar 

  30. H. Federer, Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, vol. 153 (Springer, New York, 1969)

    Google Scholar 

  31. A. Figalli, N. Fusco, F. Maggi, V. Millot, M. Morini, Isoperimetry and stability properties of balls with respect to nonlocal energies. Commun. Math. Phys. 336, 441–507 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Figalli, F. Maggi, A. Pratelli, A note on Cheeger sets. Proc. Am. Math. Soc. 137, 2057–2062 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Figalli, F. Maggi, A. Pratelli, A refined Brunn-Minkowski inequality for convex sets. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 2511–2519 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Figalli, F. Maggi, A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 182, 167–211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Figalli, F. Maggi, A. Pratelli, Sharp stability theorems for the anisotropic Sobolev and log-Sobolev inequalities on functions of bounded variation. Adv. Math. 242, 80–101 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Figalli, R. Neumayer, Gradient stability for Sobolev inequality: the case p ≥ 2 (2015). arXiv:1510.02119

    Google Scholar 

  37. W.H. Fleming, R. Rishel, An integral formula for total gradient variation. Arch. Math. 11, 218–222 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  38. I. Fonseca, S. Müller, A uniqueness proof for the Wulff theorem. Proc. Roy. Soc. Edinb. 119A, 125–136 (1991)

    MathSciNet  MATH  Google Scholar 

  39. B. Fuglede, Stability in the isoperimetric problem for convex or nearly spherical domains in \(\mathbb{R}^{n}\), Trans. Am. Math. Soc. 314, 619–638 (1989)

    MathSciNet  MATH  Google Scholar 

  40. N. Fusco, The quantitative isoperimetric inequality and related topics. Bull. Math. Sci. 5, 517–607 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. N. Fusco, M.S. Gelli, G. Pisante, On a Bonnesen type inequality involving the spherical deviation. J. Math. Pures Appl. 98, 616–632 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. N. Fusco, V. Julin, A strong form of the quantitative isoperimetric inequality. Calc. Var. Partial Differential Equations 50, 925–937 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. N. Fusco, F. Maggi, A. Pratelli, The sharp quantitative Sobolev inequality for functions of bounded variation. J. Funct. Anal. 244, 315–341 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. N. Fusco, F. Maggi, A. Pratelli, The sharp quantitative isoperimetric inequality. Ann. Math. 168, 941–980 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. N. Fusco, F. Maggi, A. Pratelli, Stability estimates for certain Faber–Krahn, isocapacitary and Cheeger inequalities. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8, 51–71 (2009)

    Google Scholar 

  46. N. Fusco, V. Millot, M. Morini, A quantitative isoperimetric inequality for fractional perimeters. J. Funct. Anal. 261, 697–715 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. R.R. Hall, A quantitative isoperimetric inequality in n-dimensional space. J. Reine Angew. Math. 428, 161–176 (1992)

    MathSciNet  MATH  Google Scholar 

  48. R.R. Hall, W.K. Hayman, A.W. Weitsman, On asymmetry and capacity. J. d’Analyse Math. 56, 87–123 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  49. A. Hurwitz, Sur le problème des isopérimètres. C. R. Acad. Sci. Paris 132, 401–403 (1901)

    MATH  Google Scholar 

  50. F. Maggi, Some methods for studying stability in isoperimetric type problems. Bull. Am. Math. Soc. 45, 367–408 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems. An Introduction to Geometric Measure Theory. Cambridge Studies in Advanced Mathematics, vol. 135 (Cambridge University Press, Cambridge, 2012)

    Google Scholar 

  52. F. Maggi, M. Ponsiglione, A. Pratelli, Quantitative stability in the isodiametric inequality via the isoperimetric inequality. Trans. Am. Math. Soc. 366, 1141–1160 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. R.J. McCann, Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80, 309–323 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  54. R.J. McCann, A convexity principle for interacting gases. Adv. Math. 128, 153–179 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  55. V.D. Milman, G. Schechtman, Asymptotic Theory of Finite-dimensional Normed Spaces. With an appendix by M. Gromov. Lecture Notes in Mathematics, vol. 1200 (Springer, Berlin, 1986)

    Google Scholar 

  56. R. Neumayer, A strong form of the quantitative Wulff inequality, arXiv:1503.06705 (2015)

    Google Scholar 

  57. G. Pólya, G. Szegö, Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies, vol. 27 (Princeton University Press, Princeton, 1952)

    Google Scholar 

  58. K. Rajala, X. Zhong, Bonnesen’s inequality for John domains in \(\mathbb{R}^{n}\). J. Funct. Anal. 263, 3617–3640 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  59. J. Steiner, Einfacher Beweis der isoperimetrischen Hauptsätze. J. Reine Angew. Math. 18, 281–296 (1838); Gesammelte Werke, vol. 2, 77–91 (Reimer, Berlin, 1882)

    Google Scholar 

  60. I. Tamanini, Regularity Results for Almost Minimal Oriented Hypersurfaces Quaderni del Dipartimento di Matematica dell’Università di Lecce, Lecce, 1984. Also available at http://cvgmt.sns.it/paper/1807/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Fusco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fusco, N. (2017). The Stability of the Isoperimetric Inequality. In: Ball, J., Marcellini, P. (eds) Vector-Valued Partial Differential Equations and Applications. Lecture Notes in Mathematics(), vol 2179. Springer, Cham. https://doi.org/10.1007/978-3-319-54514-1_2

Download citation

Publish with us

Policies and ethics