Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2179))

  • 1376 Accesses

Abstract

The aim of this course is the study of the pullback equation. More precisely we want to find a map \(\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n},\) preferably we want this map to be a diffeomorphism, that satisfies the above equation, where f, g are differential k-forms, 0 ≤ kn. Most of the time we will require these two forms to be closed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Bandyopadhyay, B. Dacorogna, On the pullback equation \(\varphi ^{{\ast}}\left (g\right ) = f\). Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 1717–1741 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Bandyopadhyay, B. Dacorogna, O. Kneuss, The pullback equation for degenerate forms. Discrete Continuous Dyn. Syst. Ser. A 27, 657–691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Banyaga, Formes-volume sur les variétés à bord. Enseignement Math. 20, 127–131 (1974)

    MathSciNet  MATH  Google Scholar 

  4. C. Barbarosie, Representation of divergence-free vector fields. Q. Appl. Math. 69, 309–316 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Basterrechea, B. Dacorogna, Existence of solutions for Jacobian and Hessian equations under smallness assumptions. Numer. Funct. Anal. Optim. 35, 868–892 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. M.E. Bogovski, Solution of the first boundary value problem for the equation of continuity of an incompressible medium. Sov. Math. Dokl. 20, 1094–1098 (1979)

    Google Scholar 

  7. J. Bolik, H Weyl’s boundary value problems for differential forms. Differ. Integr. Equ. 14, 937–952 (2001)

    MathSciNet  MATH  Google Scholar 

  8. W. Borchers, H. Sohr, On the equations \(\mathop{\mathrm{rot}}\nolimits \,v = g\) and \(\mathop{\mathrm{div}}\nolimits \,u = f\) with zero boundary conditions. Hokkaido Math. J. 19, 67–87 (1990)

    Google Scholar 

  9. J. Bourgain, H. Brézis, Sur l’équation \(\mathop{\mathrm{div}}\nolimits \,u = f\). C. R. Acad. Sci. Paris Sér. I Math. 334, 973–976 (2002)

    Google Scholar 

  10. D. Burago, B. Kleiner, Separated nets in Euclidean space and Jacobian of biLipschitz maps. Geom. Funct. Anal. 8, 273–282 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Caffarelli, Boundary regularity of maps with convex potentials II. Ann. Math. 144, 453–496 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Carlier, B. Dacorogna, Résolution du problème de Dirichlet pour l’équation du Jacobien prescrit via l’équation de Monge-Ampère. C. R. Acad. Sci. Paris, Ser. I 350, 371–374 (2012)

    Google Scholar 

  13. E.A. Coddington, N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill Book Company Inc., New York/Toronto/London, 1955)

    MATH  Google Scholar 

  14. G. Csato, B. Dacorogna, An identity involving exterior derivatives and applications to Gaffney inequality. Discrete Continuous Dyn. Syst. Ser. S 5, 531–544 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Csato, B. Dacorogna, A Dirichlet problem involving the divergence operator. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 829–848 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Csato, B. Dacorogna, O. Kneuss, The Pullback Equation for Differential Forms. PNLDE Series, vol. 83 (Birkhaüser, New York, 2012)

    Google Scholar 

  17. G. Csato, B. Dacorogna, O. Kneuss, The second order pullback equation. Calc. Var. Partial Differential Equations 49, 538–611 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Cupini, B. Dacorogna, O. Kneuss, On the equation det∇u = f with no sign hypothesis. Calc. Var. Partial Differential Equations 36, 251–283 (2009)

    Google Scholar 

  19. B. Dacorogna, A relaxation theorem and its applications to the equilibrium of gases. Arch. Ration. Mech. Anal. 77, 359–386 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Dacorogna, Existence and regularity of solutions of dw = f with Dirichlet boundary conditions. Nonlinear Problems in Mathematical Physics and Related Topics. International Mathematical Series (N. Y.), vol. 1 (Kluwer/Plenum, New York, 2002), pp. 67–82

    Google Scholar 

  21. B. Dacorogna, Direct Methods in the Calculus of Variations, 2nd edn. (Springer, New York, 2007)

    MATH  Google Scholar 

  22. B. Dacorogna, Introduction to the Calculus of Variations, 3rd edn. (Imperial College Press, London, 2014)

    Book  MATH  Google Scholar 

  23. B. Dacorogna, Sur un problème non linéaire pour la divergence et le déterminant. Confluentes Mathematici 7, 49–55 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. B. Dacorogna, N. Fusco, L. Tartar, On the solvability of the equation \(\mathop{\mathrm{div}}\nolimits \,u = f\) in L 1 and in C 0. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 14, 239–245 (2003)

    Google Scholar 

  25. B. Dacorogna, W. Gangbo, O. Kneuss, Optimal transport of closed differential forms for convex costs. C. R. Math. Acad. Sci. Paris Ser. I 353, 1099–1104 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. B. Dacorogna, W. Gangbo, O. Kneuss, Symplectic factorization, Darboux theorem and ellipticity (2017, to appear)

    Google Scholar 

  27. B. Dacorogna, O. Kneuss, A global version of Darboux theorem with optimal regularity and Dirichlet condition. Adv. Differ. Equ. 16, 325–360 (2011)

    MathSciNet  MATH  Google Scholar 

  28. B. Dacorogna, O. Kneuss, Multiple Jacobian equations. Commun. Pure Appl. Anal. 13, 1779–1787 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. B. Dacorogna, O. Kneuss, W. Neves, Some remarks on the Lie derivative and the pullback equation for contact forms. To appear in Advanced Nonlinear Studies (2017)

    Google Scholar 

  30. B. Dacorogna, J. Moser, On a partial differential equation involving the Jacobian determinant. Ann. Inst. H. Poincaré Anal. Non Linéaire 7, 1–26 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. G. Darboux, Sur le problème de Pfaff. Bull. Sci. Math. 6, 14–36, 49–68 (1882)

    MATH  Google Scholar 

  32. R. Dautray, J.L. Lions, Analyse Mathématique et Calcul Numérique (Masson, Paris, 1988)

    MATH  Google Scholar 

  33. G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations (Springer, New York, 1994)

    MATH  Google Scholar 

  34. D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer, Berlin, 1977)

    Book  MATH  Google Scholar 

  35. V. Girault, P.A. Raviart, Finite Element Approximation of the Navier-Stokes Equations. Lecture Notes in Mathematics, vol. 749 (Springer, Berlin, 1979)

    Google Scholar 

  36. L.V. Kapitanskii, K. Pileckas, Certain problems of vector analysis. J. Sov. Math. 32, 469–483 (1986)

    Article  Google Scholar 

  37. O. Kneuss, Optimal regularity and control of the support for the pullback equation (2017, to appear)

    Google Scholar 

  38. R. Kress, Potentialtheoretische Randwertprobleme bei Tensorfelderrn beliebiger Dimensions und beliebigen Ranges. Arch. Ration. Mech. Anal. 47, 59–80 (1972)

    Article  MATH  Google Scholar 

  39. O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow (Gordon and Breach, New York, 1969)

    MATH  Google Scholar 

  40. O.A. Ladyzhenskaya, V.A. Solonnikov, Some problems of vector analysis and generalized formulations of boundary value problems for the Navier-Stokes equations. J. Sov. Math. 10, 257–286 (1978)

    Article  MATH  Google Scholar 

  41. D. Mc Duff, D. Salamon, Introduction to Symplectic Topology, 2nd edn. (Oxford Science Publications, Oxford, 1998)

    Google Scholar 

  42. C.T. Mc Mullen, Lipschitz maps and nets in Euclidean space. Geom. Funct. Anal. 8, 304–314 (1998)

    Article  MathSciNet  Google Scholar 

  43. C.B. Morrey, A Variational method in the theory of harmonic integrals II. Am. J. Math. 78, 137–170 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  44. C.B. Morrey, Multiple Integrals in the Calculus of Variations (Springer, Berlin, 1966)

    MATH  Google Scholar 

  45. C.B. Morrey, J. Eells, A variational method in the theory of harmonic integrals. Ann. Math. 63, 91–128 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  46. J. Moser, On the volume elements on a manifold. Trans. Am. Math. Soc. 120, 286–294 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  47. J. Necas, Les méthodes Directes en Théorie des Équations Elliptiques (Masson, Paris, 1967)

    MATH  Google Scholar 

  48. D. Preiss, Additional regularity for Lipschitz solutions of pde. J. Reine Angew. Math. 485, 197–207 (1997)

    MathSciNet  MATH  Google Scholar 

  49. H.M. Reimann, Harmonische funktionen und jacobi-determinanten von diffeomorphismen. Comment. Math. Helv. 47, 397–408 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  50. T. Rivière, D. Ye, Resolutions of the prescribed volume form equation. Nonlinear Differ. Equ. Appl. 3, 323–369 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  51. G. Schwarz, Hodge Decomposition - a Method for Solving Boundary Value Problems. Lecture Notes in Mathematics, vol. 1607 (Springer, Berlin, 1995)

    Google Scholar 

  52. S. Takahashi, On the Poincaré-Bogovski lemma on differential forms. Proc. Jpn. Acad. Ser. A Math. Sci. 68, 1–6 (1992)

    Article  MATH  Google Scholar 

  53. L. Tartar, Topics in Nonlinear Analysis (University of Wisconsin, Madison, 1975); Preprint

    Google Scholar 

  54. W. Von Wahl, Vorlesung über das Aussenraumproblem für die instationären Gleichungen von Navier-Stokes; Rudolph-Lipschitz-Vorlesung. Sonderforschungsbereich 256 Nichtlineare Partielle Differentialgleichungen, Bonn, 1989

    Google Scholar 

  55. W. Von Wahl, On Necessary and Sufficient Conditions for the Solvability of the Equations \(\mathop{\mathrm{rot}}\nolimits \,u =\gamma\)  and \(\mathop{\mathrm{div}}\nolimits \,u =\epsilon\)  with u Vanishing on the Boundary. Lecture Notes in Mathematics, vol. 1431 (Springer, Berlin, 1990), pp. 152–157

    Google Scholar 

  56. W. Von Wahl, Estimating ∇u by \(\mathop{\mathrm{div}}\nolimits \,u\) and \(\mathop{\mathrm{curl}}\nolimits \,u\). Math. Methods Appl. Sci. 15, 123–143 (1992)

    Google Scholar 

  57. D. Ye, Prescribing the Jacobian determinant in Sobolev spaces. Ann. Inst. H. Poincaré Anal. Non Linéaire 11, 275–296 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  58. E. Zehnder, Note on Smoothing Symplectic and Volume Preserving Diffeomorphisms. Lecture Notes in Mathematics, vol. 597 (Springer, Berlin, 1976), pp. 828–855

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Dacorogna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dacorogna, B. (2017). The Pullback Equation. In: Ball, J., Marcellini, P. (eds) Vector-Valued Partial Differential Equations and Applications. Lecture Notes in Mathematics(), vol 2179. Springer, Cham. https://doi.org/10.1007/978-3-319-54514-1_1

Download citation

Publish with us

Policies and ethics