Skip to main content

Genotype-by-Environment Interactions

  • Chapter
  • First Online:
Biology of Hevea Rubber
  • 582 Accesses

Abstract

The penultimate success of a plant breeding programme depends on its ability to provide farmers with genotypes/clones with guaranteed superior performance (phenotype) in terms of yield and/or quality across a range of environments. While there can be clones that do well across a wide range of conditions (widely adapted genotypes), there are also clones that perform well exclusively under a restricted set of environments (specifically adapted genotypes). As in widely adapted genotypes, specific adaptation of genotypes is also closely related to the phenomenon of genotype-by-environment interaction. Information about phenotypic stability and adaptability assessed through GE interaction studies is prime for the selection of crop varieties/clones. Since phenotypic performance of a genotype is not necessarily the same under diverse agro-ecological conditions, the concept of stability has been defined and assessed in several ways and several biometrical methods including univariate and multivariate analyses (Lin et al. 1986; Becker and Leon 1988; Crossa 1990). The most widely used is the regression method, based on regressing the mean value of each genotype on the environmental index or marginal means of environments (Romagosa and Fox 1993). A good method to measure stability was proposed by Finlay and Wilkinson (1963) and was later improved by Eberhart and Russell (1966). They were followed by AMMI model (Gauch and Zobel 1996) and GGE biplot (Yan and Kang 2003). All these merely tried to group genotypes and environments and do not use other information than the two-way table of means. Further, factorial regression was introduced as an approach to explicitly utilize genotypic and environmental covariates for describing and explaining GE interactions. Finally, QTL modelling was put forth as a natural extension of factorial regression, where marker information is translated into genetic predictors. Tests for regression coefficients corresponding to these genetic predictors are tests for main effect QTL expression and QTL by environment interaction (QEI). QTL models for which QEI depends on environmental covariables form an interesting model class for predicting GEI, for new genotypes and new environments. QTL technology has not been efficient for predicting complex traits affected by a large number of loci. Recent delineation of high-density markers has been useful to predict genomic breeding values, thus increasing the precision of genetic value prediction over that achieved with the traditional use of pedigree information (Crossa 2012). Genomic data also allow assessing chromosome regions through marker effects and studying the pattern of covariability of marker effects across differential environmental conditions. For realistic modelling of genotypic differences across multiple environments, sophisticated mixed models are necessary to allow for heterogeneity of genetic variances and correlations across environments. Models like (a) additive model, (b) regression on the mean model, (c) additive main effects and multiplicative interactions model, (d) factorial regression models, (e) mixed models for genetic variances and covariances and (f) modelling main effect QTLs and QTL-by-environment interaction are some of the strategies being highlighted for the study of GE interactions (Malosetti et al. 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • H.C. Becker, J. Leon, Stability analysis in plant breeding. Plant Breed. 101, 1–23 (1988)

    Article  Google Scholar 

  • R.B. da Costa, R. MDV, A.J. Araujo, P.S. Gonçalves, A.R. Higa, Selection and genetic gain in rubber tree (Hevea) populations using a mixed mating system. Genet. Mol. Biol. 23, 671–679 (2000)

    Article  Google Scholar 

  • J. Crossa, Statistical analysis of multilocational trials. Adv. Agron. 44, 55–85 (1990)

    Article  Google Scholar 

  • J. Crossa, From genotype × environment interaction to gene × environment interaction. Curr. Genomics 13, 225–244 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • S.A. Eberhart, W.A. Russell, Stability parameters for comparing varieties. Crop. Sci. 6, 36–40 (1966)

    Article  Google Scholar 

  • K.W. Finlay, G.N. Wilkinson, The analysis of adaptation in a plantbreeding programme. Aust. J. Agr. Res. 14, 742–754 (1963)

    Article  Google Scholar 

  • H.G. Gauch, R.W. Zobel, in Genotype by Environment Interaction, ed. by M. S. Kang, H. G. Gauch. AMMI analysis of yield trials. Chap. 4 (CRC Press, Boca Raton, 1996), pp. 85–122

    Chapter  Google Scholar 

  • P.D.S. Goncalves, N. Bortoletto, F.D.S. Fonseca, O.C. Bataglia, A.A. Ortolani, Early selection for growth vigor in rubber tree genotypes in northwestern Sao Paulo State (Brazil). Genet. Mol. Biol. 21, 515–521 (1998)

    Article  Google Scholar 

  • P.d.S. Gonçalves, N. Bortoletto, L.M. Martin, R.B. Costa, P.B. Gallo, Genotype-environment interaction and phenotypic stability for girth growth and rubber yield of Hevea clones in São Paulo state. Brazil. Genet. Mol. Biol. 26, 441–448 (2003)

    Article  Google Scholar 

  • L.R.L. Gouvêa, G.A.P. Silva, A.L.T. de Moraes, E.J. Scaloppi Jr, R.S. de Freitas P. de S. Gonçalves, Association among stability measurements in rubber tree traits. Industrial Crops and Products (2016) http://dx.doi.org/10.1016/j.indcrop.2015.11.047

  • C.S. Lin, M.R. Binns, L.P. Lefkovitch, Stability analysis: where do we stand? Crop Sci. 26, 894–900 (1986)

    Article  Google Scholar 

  • M. Malosetti, J.-M. Ribaut, F.A. van Eeuwijk, The statistical analysis of multi-environment data:modelling genotype-by-environment interaction and its genetic basis. Front. Physiol. 4, 44 (2013). doi:10.3389/fphys.2013.00044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • P.M. Priyadarshan, Breeding Hevea brasiliensis for environmental constraints. Adv. Agron. 79, 351–400 (2003a)

    Article  Google Scholar 

  • P.M. Priyadarshan, Contributions of weather variables for specific adaptation of rubber tree (Hevea brasiliensis Muell. Arg.) clones. Genet. Mol. Biol. 26, 435–440 (2003b)

    Article  Google Scholar 

  • P.M. Priyadarshan, T.T.T. Hoa, H. Huasun, P.D.S. Gonçalves, Yielding potential of rubber (Hevea brasiliensis) in sub-optimal environments. J. Crop Improv. 14(1/2), 221–247 (2005)

    Article  Google Scholar 

  • P.M. Priyadarshan, R.B. Nair Assessment of yield adaptation of rubber tree (Hevea brasiliensis) clones through pattern analysis. Proceedings of the XV Plantation Crops Symposium (PLACROSYM), 2002, pp. 32–36

    Google Scholar 

  • P.M. Priyadarshan, P.D.S. Goncalves, K.O. Omokhafe, in Breeding Plantation Tree Crops: Tropical Species, ed. by S. M. Jain, P. M. Priyadarshan. Breeding Hevea rubber (Springer, New York, 2008), pp. 469–522

    Google Scholar 

  • I. Romagosa, P.N. Fox, in Plant Breeding: Principles and Prospects, ed. by M. D. Hayward, N. O. Bosenmark, I. Romagosa. Genotype-environment interactions and adaptation (Chapman and Hall, London, 1993), pp. 373–390

    Chapter  Google Scholar 

  • H. Tan, Genotype x environment interaction studies in rubber (Hevea) clones. J. Not. Rubb. Res. 10, 63–76 (1995)

    CAS  Google Scholar 

  • T. Thanh, L.M. Tuy, L.V. Lam, Genotype × environment interaction of Hevea clones in traditional and non-traditional rubber growing regions of Vietnam. J. Plant Interact. 11, 20–29 (2016)

    Article  Google Scholar 

  • S.P. Withanage, D.P.S.T.G. Attanayake, K.B.A. Karunasekara, Adaptability of recently recommended rubber clones for agro-climatic variability of Sri Lanka. J. Rubb. Res. Inst. Sri Lanka 87, 1–6 (2005)

    Google Scholar 

  • W. Yan, M.S. Kang, GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists (CRC Press, Boca Raton, 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Priyadarshan, P.M. (2017). Genotype-by-Environment Interactions. In: Biology of Hevea Rubber. Springer, Cham. https://doi.org/10.1007/978-3-319-54506-6_10

Download citation

Publish with us

Policies and ethics