Skip to main content

Local and Systemic Treatment of Unresectable Disease

  • Chapter
  • First Online:
Management of Differentiated Thyroid Cancer

Abstract

Papillary thyroid cancer is the most common subtype of thyroid cancer. Although incidence of the disease is increasing, survival rates are excellent, with 10-year survival around 90%. However, approximately 15–30% of patients with papillary thyroid cancer are found to have metastases (half of them at initial presentation), most commonly seen in the lungs (50%), bones (25%), both lungs and bones (20%), or occasionally in other sites (5%). Many of these patients can be treated, but complete remission is only seen in one third (J Clin Endocrinol Metab 91(8):2892–9, 2006). When progression is seen after initial treatment with thyroidectomy and radioactive iodine, other options remain. Surgical resection of locoregional disease (in selected patients) generally offers the best chance of cure; however, reoperation is generally riskier than initial surgery due to scar tissue formation. If resection is not an option due to the extent of disease, involvement of critical structures, or patient refusal, radioactive iodine treatment is generally recommended. However, advanced disease is frequently refractory to therapy with radioiodine; studies are underway of several therapies that may resensitize tumor to iodine. External beam radiotherapy (EBRT) may be employed to treat either locoregional recurrence or distant metastatic disease. TSH suppression remains an important part of therapy. Lastly, therapy with tyrosine kinase inhibitors (TKIs), either approved by the Food and Drug Administration [FDA] or as part of a clinical trial, may be recommended in symptomatic patients with progressive metastatic disease (Thyroid 26(1):1–133, 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Durante C, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab. 2006;91(8):2892–9.

    Article  CAS  PubMed  Google Scholar 

  2. Haugen BR, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Brose MS, et al. Regional approaches to the management of patients with advanced, radioactive iodine-refractory differentiated thyroid carcinoma. Expert Rev Anticancer Ther. 2012;12(9):1137–47.

    Article  CAS  PubMed  Google Scholar 

  4. Haymart MR, et al. Disease severity and radioactive iodine use for thyroid cancer. J Clin Endocrinol Metab. 2013;98(2):678–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ronga G, et al. Lung metastases from differentiated thyroid carcinoma. A 40 years’ experience. Q J Nucl Med Mol Imaging. 2004;48(1):12–9.

    CAS  PubMed  Google Scholar 

  6. Bernier MO, et al. Survival and therapeutic modalities in patients with bone metastases of differentiated thyroid carcinomas. J Clin Endocrinol Metab. 2001;86(4):1568–73.

    Article  CAS  PubMed  Google Scholar 

  7. Wolfson RM, et al. Recombinant human thyroid stimulating hormone versus thyroid hormone withdrawal for radioactive iodine treatment of differentiated thyroid cancer with nodal metastatic disease. J Oncol. 2016;2016:6496750.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rudavsky AZ, Freeman LM. Treatment of scan-negative, thyroglobulin-positive metastatic thyroid cancer using radioiodine 131I and recombinant human thyroid stimulating hormone. J Clin Endocrinol Metab. 1997;82(1):11–4.

    Article  CAS  PubMed  Google Scholar 

  9. Luster M, et al. Use of recombinant human thyrotropin before radioiodine therapy in patients with advanced differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2000;85(10):3640–5.

    Article  CAS  PubMed  Google Scholar 

  10. Pellegriti G, et al. Usefulness of recombinant human thyrotropin in the radiometabolic treatment of selected patients with thyroid cancer. Thyroid. 2001;11(11):1025–30.

    Article  CAS  PubMed  Google Scholar 

  11. Mariani G, et al. Clinical experience with recombinant human thyrotropin (rhTSH) in the management of patients with differentiated thyroid cancer. Cancer Biother Radiopharm. 2000;15(2):211–7.

    Article  CAS  PubMed  Google Scholar 

  12. Mandel SJ, Mandel L. Radioactive iodine and the salivary glands. Thyroid. 2003;13(3):265–71.

    Article  CAS  PubMed  Google Scholar 

  13. Kloos RT, et al. Nasolacrimal drainage system obstruction from radioactive iodine therapy for thyroid carcinoma. J Clin Endocrinol Metab. 2002;87(12):5817–20.

    Article  CAS  PubMed  Google Scholar 

  14. Sawka AM, et al. Second primary malignancy risk after radioactive iodine treatment for thyroid cancer: a systematic review and meta-analysis. Thyroid. 2009;19(5):451–7.

    Article  CAS  PubMed  Google Scholar 

  15. Subramanian S, et al. Second primary malignancy risk in thyroid cancer survivors: a systematic review and meta-analysis. Thyroid. 2007;17(12):1277–88.

    Article  PubMed  Google Scholar 

  16. Rubino C, et al. Second primary malignancies in thyroid cancer patients. Br J Cancer. 2003;89(9):1638–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sandeep TC, et al. Second primary cancers in thyroid cancer patients: a multinational record linkage study. J Clin Endocrinol Metab. 2006;91(5):1819–25.

    Article  CAS  PubMed  Google Scholar 

  18. Brown AP, et al. The risk of second primary malignancies up to three decades after the treatment of differentiated thyroid cancer. J Clin Endocrinol Metab. 2008;93(2):504–15.

    Article  CAS  PubMed  Google Scholar 

  19. Jonklaas J, et al. Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid. 2006;16(12):1229–42.

    Article  PubMed  Google Scholar 

  20. McGriff NJ, et al. Effects of thyroid hormone suppression therapy on adverse clinical outcomes in thyroid cancer. Ann Med. 2002;34(7–8):554–64.

    Article  CAS  PubMed  Google Scholar 

  21. Pujol P, et al. Degree of thyrotropin suppression as a prognostic determinant in differentiated thyroid cancer. J Clin Endocrinol Metab. 1996;81(12):4318–23.

    CAS  PubMed  Google Scholar 

  22. Sugitani I, Fujimoto Y. Does postoperative thyrotropin suppression therapy truly decrease recurrence in papillary thyroid carcinoma? A randomized controlled trial. J Clin Endocrinol Metab. 2010;95(10):4576–83.

    Article  CAS  PubMed  Google Scholar 

  23. Klein Hesselink EN, et al. Long-term cardiovascular mortality in patients with differentiated thyroid carcinoma: an observational study. J Clin Oncol. 2013;31(32):4046–53.

    Article  PubMed  Google Scholar 

  24. Shargorodsky M, et al. Long-term thyrotropin-suppressive therapy with levothyroxine impairs small and large artery elasticity and increases left ventricular mass in patients with thyroid carcinoma. Thyroid. 2006;16(4):381–6.

    Article  CAS  PubMed  Google Scholar 

  25. Bauer DC, et al. Risk for fracture in women with low serum levels of thyroid-stimulating hormone. Ann Intern Med. 2001;134(7):561–8.

    Article  CAS  PubMed  Google Scholar 

  26. Quan ML, Pasieka JL, Rorstad O. Bone mineral density in well-differentiated thyroid cancer patients treated with suppressive thyroxine: a systematic overview of the literature. J Surg Oncol. 2002;79(1):62–9; discussion 69–70.

    Google Scholar 

  27. Tsang RW, et al. The effects of surgery, radioiodine, and external radiation therapy on the clinical outcome of patients with differentiated thyroid carcinoma. Cancer. 1998;82(2):375–88.

    Article  CAS  PubMed  Google Scholar 

  28. Farahati J, et al. Differentiated thyroid cancer. Impact of adjuvant external radiotherapy in patients with perithyroidal tumor infiltration (stage pT4). Cancer. 1996;77(1):172–80.

    Article  CAS  PubMed  Google Scholar 

  29. Meadows KM, et al. External beam radiotherapy for differentiated thyroid cancer. Am J Otolaryngol. 2006;27(1):24–8.

    Article  PubMed  Google Scholar 

  30. Mazzaferri EL, Young RL. Papillary thyroid carcinoma: a 10 year follow-up report of the impact of therapy in 576 patients. Am J Med. 1981;70(3):511–8.

    Article  CAS  PubMed  Google Scholar 

  31. Samaan NA, et al. The results of various modalities of treatment of well differentiated thyroid carcinomas: a retrospective review of 1599 patients. J Clin Endocrinol Metab. 1992;75(3):714–20.

    CAS  PubMed  Google Scholar 

  32. Tipton KN, et al. Stereotactic body radiation therapy. Rockville: Agency for Healthcare Research and Quality; 2011.

    Google Scholar 

  33. Urbano TG, et al. Intensity Modulated Radiotherapy (IMRT) in locally advanced thyroid cancer: acute toxicity results of a phase I study. Radiother Oncol. 2007;85(1):58–63.

    Article  PubMed  Google Scholar 

  34. Terezakis SA, et al. Role of external beam radiotherapy in patients with advanced or recurrent nonanaplastic thyroid cancer: Memorial Sloan-kettering Cancer Center experience. Int J Radiat Oncol Biol Phys. 2009;73(3):795–801.

    Article  PubMed  Google Scholar 

  35. Schwartz DL, et al. Postoperative external beam radiotherapy for differentiated thyroid cancer: outcomes and morbidity with conformal treatment. Int J Radiat Oncol Biol Phys. 2009;74(4):1083–91.

    Article  PubMed  Google Scholar 

  36. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.

    Article  PubMed  Google Scholar 

  37. Yoo JY, Stang MT. Current guidelines for postoperative treatment and follow-up of well-differentiated thyroid cancer. Surg Oncol Clin N Am. 2016;25(1):41–59.

    Article  PubMed  Google Scholar 

  38. Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med. 1994;97(5):418–28.

    Article  CAS  PubMed  Google Scholar 

  39. Mazzaferri EL, Kloos RT. Clinical review 128: current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab. 2001;86(4):1447–63.

    Article  CAS  PubMed  Google Scholar 

  40. Hay ID, et al. Papillary thyroid carcinoma managed at the Mayo Clinic during six decades (1940-1999): temporal trends in initial therapy and long-term outcome in 2444 consecutively treated patients. World J Surg. 2002;26(8):879–85.

    Article  PubMed  Google Scholar 

  41. Rondeau G, et al. Ultrasonographically detected small thyroid bed nodules identified after total thyroidectomy for differentiated thyroid cancer seldom show clinically significant structural progression. Thyroid. 2011;21(8):845–53.

    Article  PubMed  Google Scholar 

  42. Robenshtok E, et al. Suspicious cervical lymph nodes detected after thyroidectomy for papillary thyroid cancer usually remain stable over years in properly selected patients. J Clin Endocrinol Metab. 2012;97(8):2706–13.

    Article  CAS  PubMed  Google Scholar 

  43. Wondisford FE, Radovick S. Clinical management of thyroid disease, vol. xi. Philadelphia: Saunders/Elsevier; 2009. 423 p.

    Google Scholar 

  44. Dadu R, Cabanillas ME. Optimizing therapy for radioactive iodine-refractory differentiated thyroid cancer: current state of the art and future directions. Minerva Endocrinol. 2012;37(4):335–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Busaidy NL, Cabanillas ME. Differentiated thyroid cancer: management of patients with radioiodine nonresponsive disease. J Thyroid Res. 2012;2012:618985.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Muresan MM, et al. Bone metastases from differentiated thyroid carcinoma. Endocr Relat Cancer. 2008;15(1):37–49.

    Article  CAS  PubMed  Google Scholar 

  47. Pittas AG, et al. Bone metastases from thyroid carcinoma: clinical characteristics and prognostic variables in one hundred forty-six patients. Thyroid. 2000;10(3):261–8.

    Article  CAS  PubMed  Google Scholar 

  48. Farooki A, et al. Skeletal-related events due to bone metastases from differentiated thyroid cancer. J Clin Endocrinol Metab. 2012;97(7):2433–9.

    Article  CAS  PubMed  Google Scholar 

  49. Dinneen SF, et al. Distant metastases in papillary thyroid carcinoma: 100 cases observed at one institution during 5 decades. J Clin Endocrinol Metab. 1995;80(7):2041–5.

    CAS  PubMed  Google Scholar 

  50. Salvatori M, et al. Solitary liver metastasis from Hurthle cell thyroid cancer: a case report and review of the literature. J Endocrinol Investig. 2004;27(1):52–6.

    Article  CAS  Google Scholar 

  51. Fromigue J, et al. Chemoembolization for liver metastases from medullary thyroid carcinoma. J Clin Endocrinol Metab. 2006;91(7):2496–9.

    Article  CAS  PubMed  Google Scholar 

  52. Wertenbroek MW, et al. Radiofrequency ablation of hepatic metastases from thyroid carcinoma. Thyroid. 2008;18(10):1105–10.

    Article  PubMed  Google Scholar 

  53. Berber E, et al. Laparoscopic radiofrequency thermal ablation for unusual hepatic tumors: operative indications and outcomes. Surg Endosc. 2005;19(12):1613–7.

    Article  CAS  PubMed  Google Scholar 

  54. Haugen BR. Management of the patient with progressive radioiodine non-responsive disease. Semin Surg Oncol. 1999;16(1):34–41.

    Article  CAS  PubMed  Google Scholar 

  55. Shimaoka K, et al. A randomized trial of doxorubicin versus doxorubicin plus cisplatin in patients with advanced thyroid carcinoma. Cancer. 1985;56(9):2155–60.

    Article  CAS  PubMed  Google Scholar 

  56. Henderson YC, et al. High rate of BRAF and RET/PTC dual mutations associated with recurrent papillary thyroid carcinoma. Clin Cancer Res. 2009;15(2):485–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Elisei R, et al. BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study. J Clin Endocrinol Metab. 2008;93(10):3943–9.

    Article  CAS  PubMed  Google Scholar 

  58. Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer. 2005;12(2):245–62.

    Article  CAS  PubMed  Google Scholar 

  59. Xing M, et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab. 2005;90(12):6373–9.

    Article  CAS  PubMed  Google Scholar 

  60. Ugolini C, et al. Presence of BRAF V600E in very early stages of papillary thyroid carcinoma. Thyroid. 2007;17(5):381–8.

    Article  CAS  PubMed  Google Scholar 

  61. Kim TY, et al. The BRAF mutation is useful for prediction of clinical recurrence in low-risk patients with conventional papillary thyroid carcinoma. Clin Endocrinol. 2006;65(3):364–8.

    Article  CAS  Google Scholar 

  62. Garcia-Rostan G, et al. ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol. 2003;21(17):3226–35.

    Article  CAS  PubMed  Google Scholar 

  63. Nikiforova MN, et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab. 2003;88(5):2318–26.

    Article  CAS  PubMed  Google Scholar 

  64. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000;6(4):389–95.

    Article  CAS  PubMed  Google Scholar 

  65. Lennard CM, et al. Intensity of vascular endothelial growth factor expression is associated with increased risk of recurrence and decreased disease-free survival in papillary thyroid cancer. Surgery. 2001;129(5):552–8.

    Article  CAS  PubMed  Google Scholar 

  66. Klein M, et al. Increased expression of the vascular endothelial growth factor is a pejorative prognosis marker in papillary thyroid carcinoma. J Clin Endocrinol Metab. 2001;86(2):656–8.

    Article  CAS  PubMed  Google Scholar 

  67. Carhill AA, et al. The noninvestigational use of tyrosine kinase inhibitors in thyroid cancer: establishing a standard for patient safety and monitoring. J Clin Endocrinol Metab. 2013;98(1):31–42.

    Article  CAS  PubMed  Google Scholar 

  68. Sherman SI. Molecularly targeted therapies for thyroid cancers. Endocr Pract. 2009;15(6):605–11.

    Article  PubMed  Google Scholar 

  69. Cabanillas ME, et al. Challenges associated with tyrosine kinase inhibitor therapy for metastatic thyroid cancer. J Thyroid Res. 2011;2011:985780.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Ball D, Sherman SI, Jarzab B. Lenvatinib treatment of advanced RAI-refractory differentiated thyroid cancer (DTC): cytokine and angiogenic factor (CAF) profiling in combination with tumor genetic analysis to identify markers associated with response. J Clin Oncol. 2012;30 Suppl:5518a.

    Google Scholar 

  71. Sherman SI, Jarzab B, Cabanillas M. A phase II trial of the multitargeted kinase inhibitor E7080 in advanced radioiodine (RAI)-refractory differentiated thyroid cancer (DTC). J Clin Oncol. 2011;29 Suppl.

    Google Scholar 

  72. Schlumberger M, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015;372(7):621–30.

    Article  PubMed  CAS  Google Scholar 

  73. Brose MS, Schlumberger M, Tahara M. Effect of age and lenvatinib treatment on overall survival for patients with 131 I refractory differentiated thyroid cancer in SELECT [abstract]. J Clin Oncol. 2015;33(15).

    Google Scholar 

  74. Cabanillas ME, Habra MA. Lenvatinib: role in thyroid cancer and other solid tumors. Cancer Treat Rev. 2016;42:47–55.

    Article  CAS  PubMed  Google Scholar 

  75. Brose MS, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet. 2014;384(9940):319–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gupta-Abramson V, et al. Phase II trial of sorafenib in advanced thyroid cancer. J Clin Oncol. 2008;26(29):4714–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kloos RT, et al. Phase II trial of sorafenib in metastatic thyroid cancer. J Clin Oncol. 2009;27(10):1675–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schneider TC, et al. Long-term analysis of the efficacy and tolerability of sorafenib in advanced radio-iodine refractory differentiated thyroid carcinoma: final results of a phase II trial. Eur J Endocrinol. 2012;167(5):643–50.

    Article  CAS  PubMed  Google Scholar 

  79. Cohen EE, et al. Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study. J Clin Oncol. 2008;26(29):4708–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sherman SI, et al. Motesanib diphosphate in progressive differentiated thyroid cancer. N Engl J Med. 2008;359(1):31–42.

    Article  CAS  PubMed  Google Scholar 

  81. Carr LL, et al. Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clin Cancer Res. 2010;16(21):5260–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bible KC, et al. Efficacy of pazopanib in progressive, radioiodine-refractory, metastatic differentiated thyroid cancers: results of a phase 2 consortium study. Lancet Oncol. 2010;11(10):962–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Leboulleux S, et al. Vandetanib in locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 2 trial. Lancet Oncol. 2012;13(9):897–905.

    Article  CAS  PubMed  Google Scholar 

  84. Cabanillas ME, et al. A phase I study of cabozantinib (XL184) in patients with differentiated thyroid cancer. Thyroid. 2014;24(10):1508–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Falchook GS, et al. BRAF inhibitor dabrafenib in patients with metastatic BRAF-mutant thyroid cancer. Thyroid. 2015;25(1):71–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Brose MS, Cabanillas M, Cohen EE. An open-label, multi-center phase 2 study of the BRAF inhibitor vemurafenib in patients with metastatic or unresectable papillary thyroid cancer (PTC) positive for the BRAF V600 mutation and resistant to radioactive iodine (NCT01286753, No25530). Eur J Cancer Care (Engl). 2013;49 Suppl 3.

    Google Scholar 

  87. Cohen EE, Needles BM, Cullen KJ. Phase 2 study of sunitinib in refractory thyroid cancer. J Clin Oncol. 2008. 26(Meeting abstracts).

    Google Scholar 

  88. Ravaud A, de la Fouchardiere C, Courbon F. Sunitinib in patients with refractory advanced thyroid cancer: the THYSU phase II trial. J Clin Oncol. 2008;26(Meeting abstracts):6058.

    Google Scholar 

  89. Carr LL, Goulart BH, Martins RG. Phase II trial of continuous dosing of sunitinib in advanced, FDG-PET avid, medullary thyroid carcinoma (MTC) and well-differentiated thyroid cancer (WDTC). J Clin Oncol. 2009;27(Meeting abstracts):6056.

    Google Scholar 

  90. Kumar R, et al. Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol Cancer Ther. 2007;6(7):2012–21.

    Article  CAS  PubMed  Google Scholar 

  91. Dadu R, et al. Efficacy and tolerability of vemurafenib in patients with BRAF(V600E)-positive papillary thyroid cancer: M.D. Anderson Cancer Center off label experience. J Clin Endocrinol Metab. 2015;100(1):E77–81.

    Article  CAS  PubMed  Google Scholar 

  92. Cabanillas ME, et al. Treatment with tyrosine kinase inhibitors for patients with differentiated thyroid cancer: the M. D. Anderson experience. J Clin Endocrinol Metab. 2010;95(6):2588–95.

    Article  CAS  PubMed  Google Scholar 

  93. Dadu R, et al. Role of salvage targeted therapy in differentiated thyroid cancer patients who failed first-line sorafenib. J Clin Endocrinol Metab. 2014;99(6):2086–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rini BI, et al. Hypertension as a biomarker of efficacy in patients with metastatic renal cell carcinoma treated with sunitinib. J Natl Cancer Inst. 2011;103(9):763–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Oken MM, et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol. 1982;5(6):649–55.

    Article  CAS  PubMed  Google Scholar 

  96. Kamba T, McDonald DM. Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br J Cancer. 2007;96(12):1788–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Durante C, et al. BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J Clin Endocrinol Metab. 2007;92(7):2840–3.

    Article  CAS  PubMed  Google Scholar 

  98. Liu D, et al. Suppression of BRAF/MEK/MAP kinase pathway restores expression of iodide-metabolizing genes in thyroid cells expressing the V600E BRAF mutant. Clin Cancer Res. 2007;13(4):1341–9.

    Article  CAS  PubMed  Google Scholar 

  99. Riesco-Eizaguirre G, et al. The oncogene BRAF V600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na+/I- targeting to the membrane. Endocr Relat Cancer. 2006;13(1):257–69.

    Article  CAS  PubMed  Google Scholar 

  100. Gruning T, et al. Retinoic acid for redifferentiation of thyroid cancer—does it hold its promise? Eur J Endocrinol. 2003;148(4):395–402.

    Article  CAS  PubMed  Google Scholar 

  101. Short SC, et al. A phase II study using retinoids as redifferentiation agents to increase iodine uptake in metastatic thyroid cancer. Clin Oncol (R Coll Radiol). 2004;16(8):569–74.

    Article  CAS  Google Scholar 

  102. Liu YY, et al. Bexarotene increases uptake of radioiodide in metastases of differentiated thyroid carcinoma. Eur J Endocrinol. 2006;154(4):525–31.

    Article  CAS  PubMed  Google Scholar 

  103. Greenberg VL, et al. Histone deacetylase inhibitors promote apoptosis and differential cell cycle arrest in anaplastic thyroid cancer cells. Thyroid. 2001;11(4):315–25.

    Article  CAS  PubMed  Google Scholar 

  104. Luong QT, et al. Antitumor activity of suberoylanilide hydroxamic acid against thyroid cancer cell lines in vitro and in vivo. Clin Cancer Res. 2006;12(18):5570–7.

    Article  CAS  PubMed  Google Scholar 

  105. Furuya F, et al. Histone deacetylase inhibitors restore radioiodide uptake and retention in poorly differentiated and anaplastic thyroid cancer cells by expression of the sodium/iodide symporter thyroperoxidase and thyroglobulin. Endocrinology. 2004;145(6):2865–75.

    Article  CAS  PubMed  Google Scholar 

  106. Kitazono M, et al. Low concentrations of the histone deacetylase inhibitor, depsipeptide (FR901228), increase expression of the Na(+)/I(-) symporter and iodine accumulation in poorly differentiated thyroid carcinoma cells. J Clin Endocrinol Metab. 2001;86(7):3430–5.

    CAS  PubMed  Google Scholar 

  107. Sherman EJ, et al. Evaluation of romidepsin for clinical activity and radioactive iodine reuptake in radioactive iodine-refractory thyroid carcinoma. Thyroid. 2013;23(5):593–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kebebew E, et al. Results of rosiglitazone therapy in patients with thyroglobulin-positive and radioiodine-negative advanced differentiated thyroid cancer. Thyroid. 2009;19(9):953–6.

    Article  CAS  PubMed  Google Scholar 

  109. Chakravarty D, et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J Clin Invest. 2011;121(12):4700–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hoftijzer H, et al. Beneficial effects of sorafenib on tumor progression, but not on radioiodine uptake, in patients with differentiated thyroid carcinoma. Eur J Endocrinol. 2009;161(6):923–31.

    Article  CAS  PubMed  Google Scholar 

  111. Ho AL, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013;368(7):623–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rothenberg SM, et al. Redifferentiation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib. Clin Cancer Res. 2015;21(5):1028–35.

    Article  CAS  PubMed  Google Scholar 

  113. Wahl RL, et al. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naifa Lamki Busaidy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Busaidy, N.L., Jaber, T. (2017). Local and Systemic Treatment of Unresectable Disease. In: Mancino, A., Kim, L. (eds) Management of Differentiated Thyroid Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-54493-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54493-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54492-2

  • Online ISBN: 978-3-319-54493-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics