Skip to main content

Motion Estimation with Finite-Element Biomechanical Models and Tracking Constraints from Tagged MRI

  • Conference paper
  • First Online:
Book cover Computational Biomechanics for Medicine

Abstract

Noninvasive measurements of tissue deformation provide biomechanical insights of an organ, which can be used as clinical functional biomarkers or experimental data for validating computational simulations. However, acquisition of 3D displacement information is susceptible to experimental inconsistency and limited scan time. In this research, we describe the process of tracking tagged magnetic resonance imaging (MRI) as enforcing harmonic phase conservation in finite-element (FE) models. This concept is demonstrated as a tool for motion estimation in an experimental brain phantom, and images from the human heart and tongue. Our results demonstrate that the new methodology offers robustness to edge and large-displacement artifacts, and that it can be seamlessly coupled with numerical simulations for estimating fiber stretch in residually stressed tissue, or for inverse identification of muscle activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Phatak NS, Maas SA, Veress AI, Pack NA, Di Bella EVR, Weiss JA (2009) Strain measurement in the left ventricle during systole with deformable image registration. Med Image Anal 13:354–361

    Article  Google Scholar 

  2. Wright RM, Ramesh KT (2012) An axonal strain injury criterion for traumatic brain injury. Biomech Model Mechanobiol 11:245–260

    Article  Google Scholar 

  3. Haber I, Metaxas DN, Axel L (2000) Three-dimensional motion reconstruction and analysis of the right ventricle using tagged MRI. Med Image Anal 4:335–355

    Article  Google Scholar 

  4. Ibrahim E-SH (2011) Myocardial tagging by cardiovascular magnetic resonance: evolution of techniques-pulse sequences, analysis algorithms, and applications. J Cardiovasc Magn Reson 13:36

    Article  Google Scholar 

  5. Bayly PV, Clayton EH, Genin GM (2012) Quantitative imaging methods for the development and validation of brain biomechanics models. Annu Rev Biomed Eng 14:369–396

    Article  Google Scholar 

  6. Moerman KM, Sprengers AMJ, Simms CK, Lamerichs RM, Stoker J, Nederveen AJ (2012) Validation of tagged MRI for the measurement of dynamic 3D skeletal muscle tissue deformation. Med Phys 39:1793–1810

    Article  Google Scholar 

  7. Harandi, N.M., Woo, J., Farazi, M.R., Stavness, L., Stone, M., Fels, S., Abugharbieh, R. (2015) Subject-specific biomechanical modelling of the oropharynx with application to speech production. IEEE ISBI, pp 1389–1392

    Google Scholar 

  8. Knutsen AK, Magrath E, McEntee JE, Xing F, Prince JL, Bayly PV, Butman JA, Pham DL (2014) Improved measurement of brain deformation during mild head acceleration using a novel tagged MRI sequence. J Biomech 47:3475–3481

    Article  Google Scholar 

  9. Spottiswoode BS, Zhong X, Hess AT, Kramer CM, Meintjes EM, Mayosi BM, Epstein FH (2007) Tracking myocardial motion from cine DENSE images using spatiotemporal phase unwrapping and temporal fitting. IEEE Trans Med Imaging 26:15–30

    Article  Google Scholar 

  10. Liu X, Abd-Elmoniem KZ, Stone M, Murano EZ, Zhuo J, Gullapalli RP, Prince JL (2012) Incompressible deformation estimation algorithm (IDEA) from tagged MR images. IEEE Trans Med Imaging 31:326–340

    Article  Google Scholar 

  11. Osman NF, McVeigh ER, Prince JL (2000) Imaging heart motion using harmonic phase MRI. IEEE Trans Med Imaging 19:186–202

    Article  Google Scholar 

  12. Horn, B.K., Schunck, B.G. (1981) Determining optical flow. In: Technical Eymposium East. pp. 319–331

    Google Scholar 

  13. Bonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  14. Bathe KJ (1996) Finite element procedures. Prentice-Hall, Upper Saddle River

    MATH  Google Scholar 

  15. Maas SA, Ellis BJ, Ateshian GA, Weiss JA (2012) FEBio: finite elements for biomechanics. J Biomech Eng 134(1):011005

    Article  Google Scholar 

  16. Spencer AJM (1985) Continuum mechanics. Dover Books, Essex

    MATH  Google Scholar 

  17. Guo H, Nickel JC, Iwasaki LR, Spilker RL (2012) An augmented Lagrangian method for sliding contact of soft tissue. J Biomech Eng 134:084503

    Article  Google Scholar 

  18. Genet M, Rausch MK, Lee LC, Choy S, Zhao X, Kassab GS, Kozerke S, Guccione JM, Kuhl E (2015) Heterogeneous growth-induced prestrain in the heart. J Biomech 48:2080–2089

    Article  Google Scholar 

  19. Ateshian GA, Ricken T (2010) Multigenerational interstitial growth of biological tissues. Biomech Model Mechanobiol 9:689–702

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by NIH Grant R01-NS055951, supplement PA12-149, and support by the Center for Neuroscience and Regenerative Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold D. Gomez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gomez, A.D., Xing, F., Chan, D., Pham, D.L., Bayly, P., Prince, J.L. (2017). Motion Estimation with Finite-Element Biomechanical Models and Tracking Constraints from Tagged MRI. In: Wittek, A., Joldes, G., Nielsen, P., Doyle, B., Miller, K. (eds) Computational Biomechanics for Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-54481-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54481-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54480-9

  • Online ISBN: 978-3-319-54481-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics