Advertisement

Reduced Order Model of a Human Left and Right Ventricle Based on POD Method

  • Piotr Przybyła
  • Witold StankiewiczEmail author
  • Marek Morzyński
  • Michał Nowak
  • Dominik Gaweł
  • Sebastian Stefaniak
  • Marek Jemielity
Conference paper
  • 601 Downloads

Abstract

The paper aims to build a reduced order model (ROM) of the left and right ventricle of a human heart. The input heart model is build from 3D sets of registered, flexible surface meshes for the left and right ventricle, resulting from the MRI data. Spatial and temporal variables are separated using Proper Orthogonal Decomposition. It enables data reduction and works as a data-driven filter, separating similar and alternative properties of the left and right ventricle movement, which is diagnostically essential in cardiology studies. Each mode can be correlated with a corresponding heart movement. The temporal coefficients reflect the functioning of the heart, and comparing them may reveal and distinguish pathologies. We have proven that complex heart motion can be modeled with relatively small number of degrees of freedom. The model spanned on a few POD modes allows the analysis of the crucial movement data and better identification of possible failures.

Keywords

Proper Orthogonal Decomposition Independent Component Analysis Proper Orthogonal Decomposition Mode Heart Motion Proper Orthogonal Decomposition Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by The National Centre for Research and Development under the grant PBS3/B9/34/2015.

References

  1. 1.
    Baguet JP, Barone-Rochette G, Tamisier R, Levy P, Pépin JL (2012) Mechanisms of cardiac dysfunction in obstructive sleep apnea. Nat Rev Cardiol 9(12):679–688CrossRefGoogle Scholar
  2. 2.
    Bouvy ML, Heerdink ER, Leufkens HGM, Hoes AW (2003) Predicting mortality in patients with heart failure: a pragmatic approach. Heart 89(6):605–609CrossRefGoogle Scholar
  3. 3.
    Bassingthwaighte J, Hunter P, Noble D (2009) The cardiac Physiome: perspectives for the future. Exp Physiol 94(5):597–605CrossRefGoogle Scholar
  4. 4.
    Rychlik M, Józwiak M, Idzior M, Chen PJ, Szulc A, Woźniak W (2010) Acetabular direction and capacity of hip joint dysplasia in cerebral palsy–counterpoint option of morphology understanding. In 6th World Congress of Biomechanics (pp. 1546–1549), SpringerGoogle Scholar
  5. 5.
    Fasano A, Daniele A, Albanese A (2012) Treatment of motor and non-motor features of Parkinson’s disease with deep brain stimulation. Lancet Neurol 11(5):429–442CrossRefGoogle Scholar
  6. 6.
    Glass L, Hunter P, McCulloch A (eds) (2012) Theory of heart: biomechanics, biophysics, and nonlinear dynamics of cardiac function. Springer, New YorkGoogle Scholar
  7. 7.
    Toussaint N, Mansi T, Delingette H, Ayache N, Sermesant M (2008) An integrated platform for dynamic cardiac simulation and image processing: application to personalised tetralogy of fallot simulation. In: Eurographics Workshop on Visual Computing and Biomedicine. (pp.21–28).Google Scholar
  8. 8.
    Vazquez M, Arís R, Houzeaux G, Aubry R et al (2011) A massively parallel computational electrophysiology model of the heart. Int J Num Meth Biomed Eng 27(12):1911–1929CrossRefzbMATHGoogle Scholar
  9. 9.
    Heimann T, Meinzer HP (2009) Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 13(4):543–563CrossRefGoogle Scholar
  10. 10.
    O’Dell W, McVeigh ER (1998) A modal description of LV motion during ejection, In: Proceedings of the International Society for Magnetic Resonance in MedicineGoogle Scholar
  11. 11.
    Hoppe RHW (2002) Model reduction by proper orthogonal decomposition, NSF-I/UCRC 288 grant, University of HoustonGoogle Scholar
  12. 12.
    Antoulas AC (2005) Approximation of large scale dynamical systems. Advances in design and control, vol 6. SIAM, PhiladelphiaGoogle Scholar
  13. 13.
    Rychlik M, Stankiewicz W, Morzyński M (2008) Application of modal analysis for extraction of geometrical features of biological objects set. Biodevices 2008(2):227–232zbMATHGoogle Scholar
  14. 14.
    Fischer SL, Hampton RH, Albert WJ (2014) A simple approach to guide factor retention decisions when applying principal component analysis to biomechanical data. Comput Methods Biomech Biomed Engin 17(3):199–203CrossRefGoogle Scholar
  15. 15.
    Radau P, Lu Y, Connelly K, Paul G, Dick AJ, Wright GA (2009) Evaluation framework for algorithms segmenting short axis cardiac MRI. MIDAS J 49. http://hdl.handle.net/10380/3070
  16. 16.
    Turk G, O’Brien JF (1999) Variational implicit surfaces. Tech. Rep. Georgia Institute of Technology, GeorgiaGoogle Scholar
  17. 17.
    Vercauteren T, Pennec X, Perchant A, Ayache N (2007) Non-parametric diffeomorphic image registration with the demons algorithm. In International Conference on Medical Image Computing and Computer-Assisted Intervention MICCAI (pp. 319–326).Google Scholar
  18. 18.
    Toussaint N, Sermesant M, Fillard P (2007) vtkinria3d: A VTK extension for spatiotemporal data synchronization, visualization and management. In: Proceedings of Workshop on Open Source and Open Data for MICCAI.Google Scholar
  19. 19.
    Daffertshofer A, Lamoth CJ, Meijer OG, Beek PJ (2004) PCA in studying coordination and variability: a tutorial. Clin Biomech 19(4):415–428CrossRefGoogle Scholar
  20. 20.
    Lumley JL (1967) The structure of inhomogeneous turbulent flows. Atmospheric turbulence and radio wave propagation, pp 166–178Google Scholar
  21. 21.
    Chandrashekara R et al (2003) Construction of a statistical model for cardiac motion analysis using nonrigid image registration. Inf Process Med Imaging 18:599–610CrossRefGoogle Scholar
  22. 22.
    Zhang X, Cowan BR, Bluemke DA, Finn JP, Fonseca CG et al (2014) Atlas-based quantification of cardiac remodeling due to myocardial infarction. PLoS One 9(10):e110243CrossRefGoogle Scholar
  23. 23.
    Sirovich L (1987) Turbulence and the dynamics of coherent structures. Parts I–III. Q Appl Math 45(3):561–590MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Zou H, Hastie T, Tibshirani R (2006) Sparse principal component analysis. J Comput Graph Stat 15(2):265–286MathSciNetCrossRefGoogle Scholar
  25. 25.
    Hoffmann H (2007) Kernel PCA for novelty detection. Pattern Recogn 40(3):863–874CrossRefzbMATHGoogle Scholar
  26. 26.
    Lu H, Plataniotis KN, Venetsanopoulos AN (2008) MPCA: multilinear principal component analysis of tensor objects. IEEE Trans Neural Netw 19(1):18–39CrossRefGoogle Scholar
  27. 27.
    Stone JV (2005) A brief introduction to independent component analysis. In: Everitt BS, Howell DC (eds) Encyclopedia of statistics in behavioral science. Wiley, ChichesterGoogle Scholar
  28. 28.
    Yu H, Yang J (2001) A direct LDA algorithm for high-dimensional data - with application to face recognition. Pattern Recogn 34(10):2067–2070CrossRefzbMATHGoogle Scholar
  29. 29.
    Perperids D, Mohiaddin R, Edwards P, Rueckert D (2007) Segmentation of cardiac MR and CT image sequences using model-based registration of a 4D statistical model. In: Medical Imaging (p 65121D). International Society for Optics and PhotonicsGoogle Scholar
  30. 30.
    Stankiewicz W, Roszak R, Morzyński M (2011) Genetic algorithm-based calibration of reduced order Galerkin models. Math Model Anal 16(2):233–247CrossRefzbMATHGoogle Scholar
  31. 31.
    Alfakih K, Plein S, Thiele H, Jones T et al (2003) Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 17(3):323–329CrossRefGoogle Scholar
  32. 32.
    Ghorbanian P, Ghaffari A, Jalali A, Nataraj C (2010) Heart arrhythmia detection using continuous wavelet transform and principal component analysis with neural network classifier. Comput Cardiol 37:669–672Google Scholar
  33. 33.
    Boulakia M et al (2012) Reduced-order modeling for cardiac electrophysiology. Application to parameter identification. Int J Numer Meth Biomed Engng 28:727–744MathSciNetCrossRefGoogle Scholar
  34. 34.
    Martis RJ et al (2012) Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Expert Syst Appl 39(14):11792–11800CrossRefGoogle Scholar
  35. 35.
    Wu J, Wang Y, Simon MA, Brigham JC (2012) A new approach to kinematic feature extraction from the human right ventricle for classification of hypertension: a feasibility study. Phys Med Biol 57(23):7905–7922CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Piotr Przybyła
    • 1
  • Witold Stankiewicz
    • 1
    Email author
  • Marek Morzyński
    • 1
  • Michał Nowak
    • 1
  • Dominik Gaweł
    • 1
  • Sebastian Stefaniak
    • 2
  • Marek Jemielity
    • 2
  1. 1.Division of Virtual EngineeringPoznan University of TechnologyPoznańPoland
  2. 2.Cardio-Surgery Department in Clinical Hospital of University of Medical Sciences PoznanPoznańPoland

Personalised recommendations