Advertisement

Evaluation of Strains on Levator Ani Muscle: Damage Induced During Delivery for a Prediction of Patient Risks

  • Olivier MayeurEmail author
  • Estelle Jeanditgautier
  • Jean-François Witz
  • Pauline Lecomte-Grosbras
  • Michel Cosson
  • Chrystele Rubod
  • Mathias Brieu
Conference paper

Abstract

Since childbirth presents a significant risk factor for pathology occurrence of the pelvic floor, analysis of the phenomena involved during a vaginal delivery is a major issue in obstetrics and gynecology researches. Computational biomechanics tool dedicated to the delivery could help to understand the causes of injuries and predict the perineal lesion. From MRI images of four women at different terms of pregnancy, a parametric FE model is generated and allows to analyze the potential damage areas during childbirth, related to strain rate of anatomical structures. The influence of the geometry of levator ani muscle, head size, terms, and cephalic presentations are investigated. The geometrical refinement of anatomical structures influences the strain levels and helps to localized more precisely the most injured areas. Posterior cephalic presentation presents higher injury risk than the anterior one. Maternal geometry at different terms brings equivalent results contrary to the fetal head sizes that have an influence on the strain level and the potential damage induced. This multi-parametric investigation allows us to have a customizable and predictive tool evaluating the potential damages on the pelvis during delivery.

Keywords

Pelvic Floor Strain Level External Anal Sphincter Fetal Head Primiparous Woman 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research is a part of the project « MAMAN » financially supported by the University of Lille 2.

References

  1. 1.
    Mayeur O, Witz JF, Lecomte-Grosbras P, Brieu M, Cosson M, Miller K (2016) Influence of geometry and mechanical properties on the accuracy of patient-specific simulation of women pelvic floor. Ann Biomed Eng 44(1):202–212CrossRefGoogle Scholar
  2. 2.
    Samuelsson EC, Arne Victor FT, Tibblin G, Svardsudd KF (1999) Signs of genital prolapse in a Swedish population of women 20 to 59 years of age and possible related factors. Am J Obstet Gynecol 180(2):299–305CrossRefGoogle Scholar
  3. 3.
    Rortveit G, Brown JS, Thom DH, Van Den Eeden SK, Creasman JM, Subak LL (2007) Symptomatic pelvic organ prolapse: prevalence and risk factors in a population-based, racially diverse cohort. Obstet Gynecol 109(6):1396–1403CrossRefGoogle Scholar
  4. 4.
    O’Boyle AL, O’Boyle JD, Ricks RE, Patience TH, Calhoun B, Davis G (2003) The natural history of pelvic organ support in pregnancy. Int Urogynecol J Pelvic Floor Dysfunct 14(1): 46–49CrossRefGoogle Scholar
  5. 5.
    Rahn DD, Ruff MD, Brown SA, Tibbals HF, Word RA (2008) Biomechanical properties of the vaginal wall: effect of pregnancy, elastic fiber deficiency, and pelvic organ prolapse. Am J Obstet Gynecol 198(5):590–596CrossRefGoogle Scholar
  6. 6.
    Sultan AH (1999) Clinical focus: obstetric perineal injury and faecal incontinence after childbirth – editorial: obstetrical perineal injury and anal incontinence. Clin Risk 5(6): 193–196Google Scholar
  7. 7.
    Kettle C, Tohill S (2008) Perineal care. BMJ Clin Evidence 2008:1–18Google Scholar
  8. 8.
    Dietz HP, Lanzarone V (2005) Levator trauma after vaginal delivery. Obstet Gynecol 106(4):707–712CrossRefGoogle Scholar
  9. 9.
    Dietz HP, Gillespie AV, Phadke P (2007) Avulsion of the pubovisceral muscle associated with large vaginal tear after normal vaginal delivery at term. ANZJOG 47(4):341–344Google Scholar
  10. 10.
    DeLancey JOL, Kearney R, Chou Q, Speights S, Binno S (2003) The appearance of levator ani muscle abnormalities in magnetic resonance images after vaginal delivery. Obstet Gynecol 101(1):46–53Google Scholar
  11. 11.
    Chen L, Ashton-Miller JA, DeLancey JOL (2009) A 3d finite element model of anterior vaginal wall support to evaluate mechanisms underlying cystocele formation. J Biomech 42(10): 1371–1377CrossRefGoogle Scholar
  12. 12.
    Parente MPL, Natal Jorge RM, Mascarenhas T, Fernandes AA, Martins JAC (2009) The influence of the material properties on the biomechanical behavior of the pelvic floor muscles during vaginal delivery. J Biomech 42(9):1301–1306CrossRefGoogle Scholar
  13. 13.
    Ashton-Miller JA, Delancey JOL (2009) On the biomechanics of vaginal birth and common sequelae. Annu Rev Biomed Eng 11:163–176CrossRefGoogle Scholar
  14. 14.
    van Delft K, Thakar R, Sultan AH, Schwertner-Tiepelmann N, Kluivers K (2014) Levator ani muscle avulsion during childbirth: a risk prediction model. BJOG 121(9):1155–1163CrossRefGoogle Scholar
  15. 15.
    Li X, Kruger JA, Nash MP, Nielsen PMF (2010) Anisotropic effects of the levator ani muscle during childbirth. Biomech Model Mechanobiol 10(4):485–494CrossRefGoogle Scholar
  16. 16.
    Li X, Kruger JA, Nash MP, Nielsen PMF (2010) Effects of nonlinear muscle elasticity on pelvic floor mechanics during vaginal childbirth. J Biomech Eng 132(11):111010–111015CrossRefGoogle Scholar
  17. 17.
    Rubod C, Boukerrou M, Brieu M, Jean-Charles C, Dubois P, Cosson M (2008) Biomechanical properties of vaginal tissue: preliminary results. Int Urogynecol J Pelvic Floor Dysfunct 121(9):811–816CrossRefGoogle Scholar
  18. 18.
    Chantereau P, Brieu M, Kammal M, Farthmann J, Gabriel B, Cosson M (2014) Mechanical properties of pelvic soft tissue of young women and impact of aging. Int Urogynecol J 25(11):1547–1553CrossRefGoogle Scholar
  19. 19.
    Yeoh OH (1993) Some forms of the strain energy function for rubber. Rubber Chem Technol 66(5):754–771CrossRefGoogle Scholar
  20. 20.
    Rubod C, Brieu M, Cosson M, Rivaux G, Clay JC, Gabriel B (2012) Biomechanical properties of human pelvic organs. J Urol 79(4):1346–1354Google Scholar
  21. 21.
    Salameh C, Canoui-Poitrine F, Cortet M, Lafon A, Rudigoz RC, Huissoud C (2011) Does persistent occiput posterior position increase the risk of severe perineal laceration? Gynecol Obstet Fertil 39(10):545–548CrossRefGoogle Scholar
  22. 22.
    Pergialiotis V, Vlachos D, Protopapas A, Pappa K, Vlachos G (2014) Risk factors for severe perineal lacerations during childbirth. Int J Gynaecol Obstet 125(1):6–14CrossRefGoogle Scholar
  23. 23.
    Ponkey SE, Cohen AP, Heffner LJ, Lieberman E (2003) Persistent fetal occiput posterior position: obstetric outcomes. Obstet Gynecol 101(5):915–920Google Scholar
  24. 24.
    Berardi M, Martinez-Romero O, Elías-Zúñiga A, Rodríguez M, Ceretti E, Fiorentino A, Donzella G, Avanzini A (2014) Levator ani deformation during the second stage of labour. Proc Inst Mech Eng 228:501–508CrossRefGoogle Scholar
  25. 25.
    Dejun J, Ashton-Miller JA, DeLancey JOL (2012) A subject specific anisotropic visco-hyperelastic finite element model of female pelvic floor stress and strain during the second stage of labor. J Biomech 45(3):455–460CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Olivier Mayeur
    • 1
    • 2
    Email author
  • Estelle Jeanditgautier
    • 2
    • 3
    • 4
  • Jean-François Witz
    • 1
    • 2
  • Pauline Lecomte-Grosbras
    • 1
    • 2
  • Michel Cosson
    • 2
    • 3
    • 4
  • Chrystele Rubod
    • 2
    • 3
    • 4
  • Mathias Brieu
    • 1
    • 2
  1. 1.Centrale LilleVilleneuve-d’AscqFrance
  2. 2.Laboratoire de Mécanique de LilleVilleneuve-d’AscqFrance
  3. 3.CHU Lille, Service de Chirurgie GynécologiqueLilleFrance
  4. 4.Université Lille Nord de France, Faculté de MédecineLilleFrance

Personalised recommendations