The Effects of Geometric Variation from OCT-Derived 3D Reconstructions on Wall Shear Stress in a Patient-Specific Coronary Artery

  • Lachlan J. Kelsey
  • Carl Schultz
  • Karol Miller
  • Barry J. DoyleEmail author
Conference paper


Computational fluid dynamics (CFD) can be used to model the blood flow in patient-specific arterial geometries and predict atherosclerotic plaque progression, as the site specificity of plaques has been shown to depend on the wall shear stress (WSS) experienced by an artery’s endothelial layer. The level of artery wall detail in CFD models is expected to underpin predictions of plaque deposition, as it influences the computation of WSS. In this study, the sensitivity of WSS computation to geometric variation in a (proximally) stented left anterior descending (LAD) coronary artery geometry is investigated. The geometry is reconstructed from intravascular optical coherence tomography (OCT) images, which are registered and merged with computed tomography (CT) to include surrounding arteries. The WSS is modelled for low-, medium- and high-resolution geometries; created by altering the point resolution of the contour algorithm used to trace the (OCT imaged) artery lumen. The results show that areas of low WSS (and thus high thrombotic susceptibility) in the stented portion of the artery depended greatly on the resolution of the geometric reconstruction. Compared with the high-resolution geometry, the low- and medium-resolutions failed to accurately determine the areas of low WSS in the stented region, as minor geometric features were inadequately represented. The sensitivity of WSS to geometric variation is also relevant to analyses using coronary artery geometries derived from other imaging modalities (particularly those of lower resolution than OCT).


Optical coherence tomography Active contour model Wall shear stress Computational fluid dynamics 


  1. 1.
    Murray C et al (2014) Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385(9963):117–171. doi: 10.1016/S0140-6736(14)61682-2 Google Scholar
  2. 2.
    Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105(9):1135–1143. doi: 10.1161/hc0902.104353 CrossRefGoogle Scholar
  3. 3.
    Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352(16):1685–1695. doi: 10.1056/NEJMra043430 CrossRefGoogle Scholar
  4. 4.
    Caro CG, Fitz-Gerald JM, Schroter RC (1969) Arterial wall shear and distribution of early atheroma in man. Nature 223(5211):1159–1160CrossRefGoogle Scholar
  5. 5.
    Friedman MH et al (1981) Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis 39(3):425–436CrossRefGoogle Scholar
  6. 6.
    Cheng Z et al (2010) Analysis of flow patterns in a patient-specific aortic dissection model. J. Biomech. Eng. 132(5):051007. doi: 10.1115/1.4000964 CrossRefGoogle Scholar
  7. 7.
    Kousera CA et al (2014) Patient-specific coronary stenoses can be modeled using a combination of OCT and flow velocities to accurately predict hyperemic pressure gradients. IEEE Trans. Biomed. Eng. 61(6):1902–1913. doi: 10.1109/tbme.2014.2310954 CrossRefGoogle Scholar
  8. 8.
    Wellnhofer E, Goubergrits L, Kertzscher U, Affeld K (2006) In-vivo coronary flow profiling based on biplane angiograms: influence of geometric simplifications on the three-dimensional reconstruction and wall shear stress calculation. Biomed. Eng. Online 5:39–39. doi: 10.1186/1475-925X-5-39 CrossRefGoogle Scholar
  9. 9.
    Toutouzas K et al (2015) Accurate and reproducible reconstruction of coronary arteries and endothelial shear stress calculation using 3D OCT: comparative study to 3D IVUS and 3D QCA. Atherosclerosis 240(2):510–519. doi: 10.1016/j.atherosclerosis.2015.04.011 CrossRefGoogle Scholar
  10. 10.
    Stone PH et al (2012) Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study. Circulation 126(2):172–181. doi: 10.1161/circulationaha.112.096438 CrossRefGoogle Scholar
  11. 11.
    Ellwein LM et al (2011) Optical coherence tomography for patient-specific 3D artery reconstruction and evaluation of wall shear stress in a left circumflex coronary artery. Cardiovasc. Eng. Technol. 2(3):212–227. doi: 10.1007/s13239-011-0047-5 CrossRefGoogle Scholar
  12. 12.
    Otake H et al (2009) Local determinants of thrombus formation following sirolimus-eluting stent implantation assessed by optical coherence tomography. J. Am. Coll. Cardiol. Intv. 2(5):459–466. doi: 10.1016/j.jcin.2009.03.003 CrossRefGoogle Scholar
  13. 13.
    Slager CJ et al (2000) True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation. Circulation 102(5):511–516CrossRefGoogle Scholar
  14. 14.
    Bourantas CV et al (2014) Fusion of optical coherence tomographic and angiographic data for more accurate evaluation of the endothelial shear stress patterns and neointimal distribution after bioresorbable scaffold implantation: comparison with intravascular ultrasound-derived reconstructions. Int J Cardiovasc Imaging 30(3):485–494. doi: 10.1007/s10554-014-0374-3 MathSciNetCrossRefGoogle Scholar
  15. 15.
    Goubergrits L et al (2009) Coronary artery WSS profiling using a geometry reconstruction based on biplane angiography. Ann. Biomed. Eng. 37(4):682–691. doi: 10.1007/s10439 -009-9656-7 CrossRefGoogle Scholar
  16. 16.
    Li Y et al (2015) Impact of side branch modeling on computation of endothelial shear stress in coronary artery disease: coronary tree reconstruction by fusion of 3D angiography and OCT. J. Am. Coll. Cardiol. 66(2):125–135. doi: 10.1016/j.jacc.2015.05.008 CrossRefGoogle Scholar
  17. 17.
    J. Santos (2009) The influence of geometric factors on the wall shear stress distribution in realistic human coronary arteries. Dissertation, New University of LisbonGoogle Scholar
  18. 18.
    Hetterich H et al (2015) Coronary computed tomography angiography based assessment of endothelial shear stress and its association with atherosclerotic plaque distribution in-vivo. PLoS One 10(1):e0115408. doi: 10.1371/journal.pone.0115408 CrossRefGoogle Scholar
  19. 19.
    J.K. Hughey (2014) Computational evaluation of shear stress and restenosis in stented coronary arteries using optical coherence tomography. Master’s Thesis, Marquette UniversityGoogle Scholar
  20. 20.
    Chenyang X, Prince JL (1998) Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3):359–369. doi: 10.1109/83.661186 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Tu S et al (2013) In vivo flow simulation at coronary bifurcation reconstructed by fusion of 3-dimensional X-ray angiography and optical coherence tomography. Circ Cardiovasc Interv 6(2):15–17. doi: 10.1161/circinterventions.112.000051 CrossRefGoogle Scholar
  22. 22.
    Spiegel M et al (2011) Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation. Comput Methods Biomech Biomed Engin 14(1):9–22. doi: 10.1080/10255842.2010.518565 CrossRefGoogle Scholar
  23. 23.
    Roache PJ (1994) Perspective: a method for uniform reporting of grid refinement studies. J. Fluids Eng. 116(3):405–413. doi: 10.1115/1.2910291 CrossRefGoogle Scholar
  24. 24.
    Doyle BJ, McGloughlin TM, Kavanagh EG, Hoskins PR (2014) From detection to rupture: a serial computational fluid dynamics case study of a rapidly expanding, patient-specific, ruptured abdominal aortic aneurysm. In: Doyle BJ, Miller K, Wittek A, Nielsen MFP (eds) Computational Biomechanics for Medicine: Fundamental Science and Patient-specific Applications. New York, Springer, pp 53–68CrossRefGoogle Scholar
  25. 25.
    Leuprecht A, Perktold K (2001) Computer simulation of non-newtonian effects on blood flow in large arteries. Comput Methods Biomech Biomed Engin 4(2):149–163. doi: 10.1080/10255840008908002 CrossRefGoogle Scholar
  26. 26.
    Biasetti J, Spazzini PG, Swedenborg J, Gasser TC (2012) An integrated fluid-chemical model toward modeling the formation of intra-luminal thrombus in abdominal aortic aneurysms. Front. Physiol. 3:266. doi: 10.3389/fphys.2012.00266 CrossRefGoogle Scholar
  27. 27.
    Steinman DA et al (2013) Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME 2012 Summer Bioengineering Conference CFD Challenge. J. Biomech. Eng. 135(2):021016. doi: 10.1115/1.4023382 CrossRefGoogle Scholar
  28. 28.
    Torii R et al (2009) Fluid–structure interaction analysis of a patient-specific right coronary artery with physiological velocity and pressure waveforms. Commun. Numer. Methods Eng. 25(5):565–580. doi: 10.1002/cnm.1231 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Myers JG et al (2001) Factors influencing blood flow patterns in the human right coronary artery. Ann. Biomed. Eng. 29(2):109–120CrossRefGoogle Scholar
  30. 30.
    Boutsianis E et al (2004) Computational simulation of intracoronary flow based on real coronary geometry. Eur. J. Cardiothorac. Surg. 26(2):248–256. doi: 10.1016/j.ejcts.2004.02.041 CrossRefGoogle Scholar
  31. 31.
    Dong J, Sun Z, Inthavong K, Tu J (2015) Fluid–structure interaction analysis of the left coronary artery with variable angulation. Computer methods in biomechanics and biomedical engineering 18(14):1500–1508. doi: 10.1080/10255842.2014.921682 CrossRefGoogle Scholar
  32. 32.
    Taylor CA, Fonte TA, Min JK (2013) Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reservescientific basis. J. Am. Coll. Cardiol. 61(22):2233–2241. doi: 10.1016/j.jacc.2012.11.083 CrossRefGoogle Scholar
  33. 33.
    Kamiya A, Togawa T (1980) Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am. J. Phys. 239(1):H14–H21Google Scholar
  34. 34.
    Campbell IC et al (2012) Effect of inlet velocity profiles on patient-specific computational fluid dynamics simulations of the carotid bifurcation. J. Biomech. Eng. 134(5):051001–051001. doi: 10.1115/1.4006681 CrossRefGoogle Scholar
  35. 35.
    LaDisa JF Jr et al (2005) Alterations in wall shear stress predict sites of neointimal hyperplasia after stent implantation in rabbit iliac arteries. Am. J. Physiol. Heart Circ. Physiol. 288(5):H2465–H2475. doi: 10.1152/ajpheart.01107.2004 CrossRefGoogle Scholar
  36. 36.
    Joner M et al (2008) Endothelial cell recovery between comparator polymer-based drug-eluting stents. J. Am. Coll. Cardiol. 52(5):333–342. doi: 10.1016/j.jacc.2008.04.030 CrossRefGoogle Scholar
  37. 37.
    Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282(21):2035–2042CrossRefGoogle Scholar
  38. 38.
    Lawrence MB, McIntire LV, Eskin SG (1987) Effect of flow on polymorphonuclear leukocyte/endothelial cell adhesion. Blood 70(5):1284–1290Google Scholar
  39. 39.
    Hardman D et al (2013) On the prediction of monocyte deposition in abdominal aortic aneurysms using computational fluid dynamics. Proc Inst Mech Eng H 227(10):1114–1124. doi: 10.1177/0954411913494319 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Lachlan J. Kelsey
    • 1
    • 2
  • Carl Schultz
    • 3
    • 4
  • Karol Miller
    • 2
    • 5
  • Barry J. Doyle
    • 1
    • 6
    • 7
    Email author
  1. 1.Vascular Engineering LaboratoryHarry Perkins Institute of Medical ResearchPerthAustralia
  2. 2.Intelligent Systems for Medicine Laboratory, School of Mechanical and Chemical EngineeringThe University of Western AustraliaPerthAustralia
  3. 3.Department of CardiologyRoyal Perth HospitalPerthAustralia
  4. 4.School of MedicineThe University of Western AustraliaPerthAustralia
  5. 5.Institute of Mechanics and Advanced MaterialsCardiff UniversityCardiffUK
  6. 6.British Heart Foundation Centre for Cardiovascular ScienceThe University of EdinburghEdinburghUK
  7. 7.School of Mechanical and Chemical EngineeringThe University of Western AustraliaPerthAustralia

Personalised recommendations