Skip to main content

Shaping Mathematics as a Tool: The Search for a Mathematical Model for Quasi-crystals

  • Chapter
  • First Online:
Mathematics as a Tool

Part of the book series: Boston Studies in the Philosophy and History of Science ((BSPS,volume 327))

  • 902 Accesses

Abstract

Although the use of mathematical models is ubiquitous in modern science, the involvement of mathematical modeling in the sciences is rarely seen as cases of interdisciplinary research. Often, mathematics is “applied” in the sciences, but mathematics also features in open-ended, truly interdisciplinary collaborations. The present paper addresses the role of mathematical models in the open-ended process of conceptualizing new phenomena. It does so by suggesting a notion of cultures of mathematization, stressing the potential role of the mathematical model as a boundary object around which negotiations of different desiderata can take place. This framework is then illustrated by a case study of the early efforts to produce a mathematical model for quasi-crystals in the first two decades after Dan Shechtman’s discovery of this new phenomenon in 1984.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Shechtman’s discovery and the subsequent study of quasi-crystals is described and outlined in many publications, some of which are explicitly referred to in the following. The reader may also consult e.g. Brecque (1987/1988) and Steinhardt (2013).

  2. 2.

    Shechtman’s Nobel interview can be found online: http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2011/shechtman-interview.html

References

  • Abraham, T. H. (2004). Nicolas Rashevsky’s mathematical biophysics. Journal of the History of Biology, 37, 333–385.

    Article  Google Scholar 

  • Andersen, H., & Wagenknecht, S. (2013). Epistemic dependence in interdisciplinary groups. Synthese, 190, 1881–1898.

    Article  Google Scholar 

  • Authier, A. (2013). Early days of X-ray crystallography. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Axel, F., & Gratias, D. (Eds.). (1995). Beyond quasicrystals. Les Houches, March 7–18, 1994. Berlin/Heidelberg: Springer.

    Google Scholar 

  • Axel, F., Denoyer, F., & Gazeau, J. P. (Eds.). (2000). From quasicrystals to more complex systems. Les Houches, February 23–March 6, 1998. Springer.

    Google Scholar 

  • Bernal, J. D. (1964, July 28). The Bakerian lecture, 1962: The structure of liquids. Proceedings of the Royal Society of London. A: Mathematical and Physical Sciences, 280(1382), 299–322.

    Article  CAS  Google Scholar 

  • Blech, I. A., Cahn, J. W., & Gratias D. (2012, October). Reminiscences about a chemistry Nobel Prize won with metallurgy: Comments on D. Shechtman and I. A. Blech; Metall. Trans. A, 1985, vol. 16A, pp. 1005–1012. Metallurgical And Materials Transactions A, 43A, 3411–3414.

    Google Scholar 

  • Brecque, M. L. (1987/1988). Quasicrystals: Opening the door to Forbidden symmetries. MOSAIC, 18(4), 2–23.

    Google Scholar 

  • Burchfield, J. D. (1975). Lord Kelvin and the age of the Earth. London/Basingstoke: The Macmillan Press.

    Book  Google Scholar 

  • Burke, J. G. (1966). Origins of the science of crystals. Berkeley/Los Angeles: University of California Press.

    Google Scholar 

  • Bursill, L. A., & Lin, P. J. (1985, July 4). Penrose tiling observed in a quasi-crystal. Nature, 316, 50–51.

    Article  CAS  Google Scholar 

  • Coddens, G. (1988). A new approach to quasicrystals. Solid State Communications, 65(7), 637–641.

    Article  Google Scholar 

  • England, P., Molnar, P., & Richter, F. (2007a, January). John Perry’s neglected critique of Kelvin’s age for the Earth: A missed opportunity in geodynamics. GSA Today, 17, 4–9.

    Article  Google Scholar 

  • England, P., Molnar, P., & Richter, F. (2007b). Kelvin, Perry and the age of the Earth. American Scientist, 95(4), 342–349.

    Article  Google Scholar 

  • Epple, M., Kjeldsen, T. H., & Siegmund-Schultze, R. (Eds.). (2013). From “Mixed” to “Applied” mathematics: Tracing an important dimension of mathematics and its history (Oberwolfach reports 12). Oberwolfach: Mathematisches Forschungsinstitut.

    Google Scholar 

  • Galison, P. (1997). Image and logic. A material culture of microphysics. Chicago: The University of Chicago Press.

    Google Scholar 

  • Gelfert, A. (2014, May). Applicability, indispensability, and underdetermination: Puzzling over Wigner’s ‘Unreasonable effectiveness of mathematics’. Science & Education, 23(5), 997–1009.

    Article  Google Scholar 

  • Grattan-Guinness, I. (2008). Solving Wigner’s mystery: The reasonable (though perhaps limited) effectiveness of mathematics in the natural sciences. The Mathematical Intelligencer, 30(3), 7–17.

    Article  Google Scholar 

  • Hargittai, B., & Hargittai, I. (2012). Quasicrystal discovery: From NBS/NIST to Stockholm. Structural Chemistry, 23(2), 301–306.

    Article  CAS  Google Scholar 

  • International Union of Crystallography. (1992). Report of the Executive Committee for 1991. Acta Crystallographica Section A, A48, 922–946.

    Google Scholar 

  • Keller, E. F. (2002). Making sense of life. Explaining biological development with models, metaphors, and machines. Cambridge, MA/London: Harvard University Press.

    Google Scholar 

  • Keys, A. S., & Glotzer, S. C. (2007). How do quasicrystals grow? Physical Review Letters, 99(235503), 1–4.

    Google Scholar 

  • Knorr Cetina, K. (1999). Epistemic cultures. How the sciences make knowledge. Cambridge, MA/London: Harvard University Press.

    Google Scholar 

  • Kragh, H. (2015). Mathematics and physics: The idea of a pre-established harmony. Science & Education, 24(5), 515–527.

    Article  Google Scholar 

  • Kuhn, T. S. (1962/1996). The structure of scientific revolutions (3rd ed.). Chicago/London: The University of Chicago Press.

    Google Scholar 

  • Levine, D., & Steinhardt, P. J. (1984, December 24). Quasicrystals: A new class of ordered structures. Physical Review Letters, 53(26), 2477–2480.

    Article  CAS  Google Scholar 

  • Lidin, S. (1991). Quasicrystals: Local structure versus global structure. Materials Science and Engineering, A134, 893–895.

    Article  Google Scholar 

  • Mackay, A. L. (1982). Crystallography and the Penrose pattern. Physica, 114A, 609–613.

    Article  CAS  Google Scholar 

  • Mackay, A. L. (1987). Quasi-crystals and amorphous materials. Journal of Non-Crystalline Solids, 97–98, 55–62.

    Article  Google Scholar 

  • Morgan, M. S., & Morrison, M. (Eds.). (1999). Models as mediators. Perspectives on natural and social science. Cambridge: Cambridge University Press.

    Google Scholar 

  • Patera, J. (Ed.). (1998). Quasicrystals and Discrete Geometry (Fields Institute monographs). Providence: American Mathematical Society.

    Google Scholar 

  • Penrose, R. (1974). The rôle of aesthetics in pure and applied mathematical research. Bulletin of the Institute of Mathematics and Its Applications, 10, 266–271.

    Google Scholar 

  • Penrose, R. (1979, March). Pentaplexity: A class of non-periodic tilings of the plane. The Mathematical Intelligencer, 2(1), 32–37.

    Article  Google Scholar 

  • Perry, J. (1895). On the age of the Earth. Nature, 51, 224–227, 341–342, 582–585.

    Google Scholar 

  • Reade, T. M. (1878, April). The age of the world as viewed by the geologist and the mathematician. The Geological Magazine. New Series, 5(4), 145–154.

    Google Scholar 

  • Schlote, K.-H., & Schneider, M. (Eds.). (2011). Mathematics meets physics. A contribution to their interaction in the 19th and the first half of the 20th century. Studien zur Entwicklung von Mathematik und Physik in ihren Wechselwirkungen. Frankfurt am Main: Verlag Harri Deutsch.

    Google Scholar 

  • Schwarzschild, B. (1985, February). “Forbidden fivefold symmetry may indicate quasicrystal phase”. Physics Today. News: Search & discovery, pp. 17–19.

    Google Scholar 

  • Senechal, M. (1995). Quasicrystals and geometry. Cambridge: Cambridge University Press.

    Google Scholar 

  • Senechal, M. (2006, September). What is a quasicrystal? Notices of the AMS, 53(8), 886–887.

    Google Scholar 

  • Senechal, M., & Taylor, J. (1990). Quasicrystals: The view from Les Houches. The Mathematical Intelligencer, 12(2), 54–64.

    Article  Google Scholar 

  • Senechal, M., & Taylor, J. (2013). Quasicrystals: The view from Stockholm. The Mathematical Intelligencer, 35(2), 1–9.

    Article  Google Scholar 

  • Shechtman, D., & Blech, I. A. (1985, June). The microstructure of rapidly solidified Al6Mn. Metallurgical Transactions, 16A, 1005–1012.

    Article  CAS  Google Scholar 

  • Shechtman, D., et al. (1984, November 12). Metallic phase with long-range orientational order and no translational symmetry. Physical Review Letters, 53(20), 1951–1953.

    Article  CAS  Google Scholar 

  • Steinhardt, P. J. (2013). Quasicrystals: A brief history of the impossible. Rend. Fis. Acc Lincei, 24, S85–S91.

    Article  Google Scholar 

  • Takakura, H., et al. (2007, January). Atomic structure of the binary icosahedral Yb-Cd quasicrystal. Nature Materials, 6, 58–63.

    Article  CAS  Google Scholar 

  • Wigner, E. (1960). The unreasonable effectiveness of mathematics in the natural sciences. Communications in Pure and Applied Mathematics, 13(1), 1–14.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Kragh Sørensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sørensen, H.K. (2017). Shaping Mathematics as a Tool: The Search for a Mathematical Model for Quasi-crystals. In: Lenhard, J., Carrier, M. (eds) Mathematics as a Tool. Boston Studies in the Philosophy and History of Science, vol 327. Springer, Cham. https://doi.org/10.1007/978-3-319-54469-4_5

Download citation

Publish with us

Policies and ethics