Skip to main content

Object Oriented Models vs. Data Analysis – Is This the Right Alternative?

  • Chapter
  • First Online:
Mathematics as a Tool

Part of the book series: Boston Studies in the Philosophy and History of Science ((BSPS,volume 327))

Abstract

I analyze the new emerging role of mathematics for extracting structure from data. This role is different from the traditional role of mathematics as a tool for other sciences. Each such science had provided a theoretical framework in which experiments acquired meaning, with which the quality of data could be assessed and which could be explored with the formal methods of mathematics. The challenge for mathematics now is to handle data without such theoretical guidance from other disciplines. This calls for new principles that are structural, abstract and independent of specific content. Mathematics then is no longer the tool of science, but becomes the science of tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    I learned this quote from Peter Schuster.

  2. 2.

    The one-body problem, however, was eventually understood as being ill posed. As Leibniz first saw, any physical theory has to be concerned with relations between objects, and an irreducible point mass can only entertain relations with other such objects, but not with itself, because there is no fixed external frame of reference independent of objects. The latter aspect is fundamental in Einstein’s theory of general relativity. (See for instance the exposition by the author in Riemann 2016.)

  3. 3.

    The original model was developed only for a particular type of neuron, the giant squid axon, but similarly models have subsequently been developed for other classes of neurons as well.

  4. 4.

    In different fields, it may be different what is considered as a larger or a smaller scale. In geography, for instance, larger scale means higher resolution, that is, a smaller reduction factor. In other areas, like physics, a larger scale means the opposite. We shall follow the latter terminology. Thus, at a larger scale, many details from a smaller scale may disappear whereas larger structures might become visible.

  5. 5.

    Batterman (2002) and Lenhard (2013) emphasize the fact that such idealized systems that arise as asymptotic limits in some theory are employed as models for empirical systems.

  6. 6.

    Interestingly, stochastic perturbations of this deterministic system produce genuinely nonlinear effects, see Gutkin et al. (2009) and Tuckwell and Jost (2012).

  7. 7.

    A perhaps somewhat technical point concerning the representation by this diagram: Often, one thinks of a projection as going down, instead of up, and one would then represent X in the top and \(\hat{X}\) in the bottom row. Since, however, we think of \(\hat{X}\) as a higher, more abstract, level, we rather represent that higher level in the top row of our diagram.

  8. 8.

    Support vector machines are efficient classifiers that use a high-dimensional linear feature space (see Christianini and Shawe-Taylor 2000; Schölkopf and Smola 2002; Steinwart and Christmann 2008).

  9. 9.

    In the terminology of statistical physics, the correlation length of word sequences in texts becomes relatively small after five words. In fact, one would expect that it never becomes exactly zero, that is, there do exist correlations of arbitrary length, whatever small. Thus, in technical terms, when moving from a word to subsequent ones in a text, we have a stochastic process that does not satisfy a Markov property for strings of words of any finite length.

References

  • Amari, S. I., Nagaoka, H., & Harada, D. (2007). Methods of information geometry. Oxford: American Mathematical Society.

    Google Scholar 

  • Ay, N., Jost, J., Lê, H. V., & Schwachhöfer, L. (2017). Information geometry. Heidelberg: Springer.

    Google Scholar 

  • Bačák, M., Hua, B. B., Jost, J., Kell, M., & Schikorra, A. (2015). A notion of nonpositive curvature for general metric spaces. Differential Geometry and its Applications, 38, 22–32.

    Article  Google Scholar 

  • Batterman, R. (2002). The Devil in the details: Asymptotic reasoning in explanation, reduction, and emergence (Oxford studies in philosophy of science). Oxford/New York: Oxford University Press.

    Google Scholar 

  • Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15, 1373–1396.

    Article  Google Scholar 

  • Bishop, C. (1995). Neural networks for pattern recognition. Oxford/New York: Oxford University Press.

    Google Scholar 

  • Boltzmann, L. (2000). Entropie und Wahrscheinlichkeit, Ostwalds Klassiker 286, Harri Deutsch.

    Google Scholar 

  • Breidbach, O., & Jost, J. (2004). Working in a multitude of trends. Species balancing populations. Journal of Zoological Systematics and Evolutionary Research, 42, 202–207.

    Article  Google Scholar 

  • Burns, A., & Mitchell, W. (1946). Measuring business cycles (Studies of business cycles, Vol. 2). New York: National Bureau of Economic Research.

    Google Scholar 

  • Candès, E., Romberg, J., & Tao, T. (2006). Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 59, 1207–1223.

    Article  Google Scholar 

  • Cardy, J. (1996). Scaling and renormalization in statistical physics. Cambridge/New York: Cambridge University Press.

    Book  Google Scholar 

  • Carlsson, G. (2009). Topology and data. Bulletin of the American Mathematical Society, 46, 255–308.

    Article  Google Scholar 

  • Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge: MIT Press.

    Google Scholar 

  • Chomsky, N. (1981). Lectures on government and binding. Dordrecht: Foris.

    Google Scholar 

  • Chomsky, N. (1995). The minimalist program. Cambridge: MIT Press.

    Google Scholar 

  • Close, F. (2004). Particle physics: A very short introduction. Oxford/New York: Oxford University Press.

    Book  Google Scholar 

  • Cover, T., & Thomas, J. (1981). Elements of information theory. Hoboken: Wiley.

    Google Scholar 

  • Christianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernel-based learning methods. Cambridge/New York: Cambridge University Press.

    Book  Google Scholar 

  • Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience. Cambridge: MIT Press.

    Google Scholar 

  • Derrida, J. (1967). L’écriture et la différence. Seuil: Paris.

    Google Scholar 

  • Devaney, R. L. (1986). An introduction to chaotic dynamical systems. Benjamin/Cummings: Menlo Park.

    Google Scholar 

  • Di Francesco, P., Mathieu, P., & Sénéchal, D. (1997). Conformal field theory. New York: Springer.

    Book  Google Scholar 

  • Donoho, D. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52, 1289–1306.

    Article  Google Scholar 

  • Falkenburg, B. (2007). Particle metaphysics. A critical account of subatomic reality. Berlin/New York: Springer.

    Google Scholar 

  • Fornasier, M., & Rauhut, H. (2010). Theoretical foundations and numerical methods for sparse recovery. Berlin/New York: de Gruyter.

    Book  Google Scholar 

  • Foucard, S., & Rauhut, H. (2013). A mathematical introduction to compressive sensing. New York: Birkhäuser.

    Book  Google Scholar 

  • Garnier, J., & Papanicolaou, G. (2012). Correlation based virtual source imaging in strongly scattering random media. Inverse Problems, 28, 075002.

    Article  Google Scholar 

  • Gerstner, W., & Kistler, W. (2002). Spiking neuron models. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Görnerup, O., & Nilsson Jacobi, M. (2010). A method for finding aggregated representations of linear dynamical systems. Advances in Complex Systems, 13, 199–215.

    Article  Google Scholar 

  • Green, M., Schwarz, J., & Witten, E. (1995). Superstring theory (2 Vols.). Cambridge/New York: Cambridge University Press.

    Google Scholar 

  • Grün, S., & Rotter, S. (2010). Analysis of parallel spike trains. New York: Springer.

    Book  Google Scholar 

  • Gutkin, B., Tuckwell, H., & Jost, J. (2009). Inhibition of rhythmic neural spiking by noise: The occurrence of a minimum in activity with increasing noise. Naturwissenschaften, 96, 1091–1097.

    Article  CAS  Google Scholar 

  • Hacking, I. (1990). The taming of chance. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Hacking, I. (1983). Representing and intervening. Cambridge/New York: Cambridge University Press.

    Book  Google Scholar 

  • Haken, H. (1983). Synergetics (3rd ed.). Berlin/New York: Springer.

    Book  Google Scholar 

  • Hasse, H., & Lenhard, J. (2017). Boon and bane: On the role of adjustable parameters in simulation models. In Mathematics as a tool: Tracing new roles of mathematics in the sciences. Cham: Springer. This volume.

    Google Scholar 

  • Hausdorff, F. (1918). Dimension und äußeres Maß. Mathematische Annalen, 79, 157–179.

    Article  Google Scholar 

  • Hawkins, T. (2000). Emergence of the theory of Lie groups: An essay in the history of mathematics (pp. 1869–1926). New York: Springer.

    Book  Google Scholar 

  • Helbing, D. (2001). Traffic and related self-driven many-particle systems. Reviews of Modern Physics, 73, 1067–1141.

    Article  Google Scholar 

  • Hodgkin, A., & Huxley, A. (1952). A quantitative description of ion currents and its application to conductance and excitation in nerve membranes. The Journal of Protozoology, 117, 500–544.

    CAS  Google Scholar 

  • Hofrichter, J., Jost, J., & Tran, T. D. (2017). Information geometry and population genetics. Heidelberg: Springer.

    Book  Google Scholar 

  • Jaynes, E. T. (2003). Probability theory: The logic of science. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Jost, J. (2001). Bosonic strings. Providence: American Mathematical Society/International Press.

    Google Scholar 

  • Jost, J. (2005). Dynamical systems. Berlin/New York: Springer.

    Google Scholar 

  • Jost, J. (2009). Geometry and physics. Berlin/London: Springer.

    Book  Google Scholar 

  • Jost, J. (2011). Riemannian geometry and geometric analysis (6th ed.). Heidelberg/New York: Springer.

    Book  Google Scholar 

  • Jost, J. (2013). Partial differential equations (3rd ed.). New York: Springer.

    Book  Google Scholar 

  • Jost, J. (2014). Mathematical methods for biology and neurobiology. London: Springer.

    Book  Google Scholar 

  • Jost, J. (2015). Mathematical concepts. Cham: Springer.

    Book  Google Scholar 

  • Jost, J. Mathematical neurobiology. Concepts, tools, and questions. Monograph, to appear.

    Google Scholar 

  • Jost, J., Bertschinger, N., & Olbrich, E. (2010). Emergence. A dynamical systems approach. New Ideas in Psychology, 28, 265–273.

    Article  Google Scholar 

  • Jost, J., & Scherrer, K. A conceptual analysis of genetic coding and regulation in the light of modern molecular biology. Manuscript to be submitted.

    Google Scholar 

  • Kabalak, A., Smirnova, E., & Jost, J. (2015). Non-cooperative game theory in biology and cooperative reasoning in humans. Theory in Biosciences, 134, 17–46.

    Article  Google Scholar 

  • Kantz, H., & Schreiber, T. (1997). Nonlinear time series analysis. Cambridge: Cambridge University Press.

    Google Scholar 

  • Klipp, E., Herwig, R., Kowald, A., Wierling, C., & Lehrach, H. (2005). Systems biology in practice. Weinheim: Wiley-VCH.

    Book  Google Scholar 

  • Koch, C. (1999). Biophysics of computation. New York: Oxford University Press.

    Google Scholar 

  • Koopmans, T., (1947). Measurement without theory. The Review of Economics and Statistics, 29, 161–172.

    Article  Google Scholar 

  • Lenhard, J., (2013). Coal to diamonds. Foundations of Science, 18, 583–586.

    Article  Google Scholar 

  • MacKay, D. (2003). Information theory, inference, and learning algorithms. Cambridge: Cambridge University Press.

    Google Scholar 

  • Mandelbrot, B. B. (1982). The fractal geometry of nature. San Francisco: Freeman.

    Google Scholar 

  • Mantegna, R., & Stanley, H. E. (1999). An introduction to econophysics: Correlations and complexity in finance. Cambridge: Cambridge University Pres.

    Book  Google Scholar 

  • Murray, J. (2008). Mathematical biology (2 Vols., 3rd ed.). New York: Springer.

    Google Scholar 

  • Napolitani, D., Panza, M., & Struppa, D. (2011). Agnostic science. Towards a philosophy of data analysis. Foundations of Science, 16, 1–20.

    Article  Google Scholar 

  • Neugebauer, O. (1967). Problems and methods in Babylonian mathematical astronomy. Henri Norris Russell Lecture. The Astronomical Journal, 72, 964–972.

    Article  Google Scholar 

  • Neugebauer, O. (1969). The exact sciences in antiquity (2nd ed.). Dover.

    Google Scholar 

  • Pavliotis, G., & Stuart, A. (2008). Multiscale methods. Averaging and homogenization. New York: Springer.

    Google Scholar 

  • Pfante, O., Bertschinger, N., Olbrich, E., Ay, N., & Jost, J. (2014). Comparison between different methods of level identification. Advances in Complex Systems, 17, 1450007.

    Article  Google Scholar 

  • Pfante, O., Olbrich, E., Bertschinger, N., Ay, N., & Jost, J. (2014). Closure measures and the tent map. Chaos, 24, 013136.

    Article  Google Scholar 

  • Polchinski, J. (1998). String theory (2 Vols.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Pollard, C., & Sag, I. (1994). Head-Driven phrase structure grammar. Chicago: University of Chicago Press.

    Google Scholar 

  • Riemann, B. (2016). Über die Hypothesen, welche der Geometrie zu Grunde liegen, edited with a historical and mathematical commentary by Jost, J., Springer, 2013; English translation: On the hypotheses which lie at the bases of geometry, Birkhäuser.

    Google Scholar 

  • Ritzwoller, M., Lin, F. C., & Shen, W. (2011). Ambient noise tomography with a large seismic array, C. R. Geoscience. doi: 10.1016.

    Google Scholar 

  • Saari, D., & Xia, Z. (1995). Off to infinity in finite time. Notices AMS, 42, 538–546.

    Google Scholar 

  • de Saussure, F. (1995). Cours de linguistique générale, published by C. Bally, A. Sechehaye and A. Riedlinger, critical edition by T. de Mauro, Payot.

    Google Scholar 

  • Scherrer, K., & Jost, J. (2007). Gene and genon concept: Coding vs. regulation. Theory in Biosciences, 126, 65–113.

    Article  CAS  Google Scholar 

  • Scherrer, K., & Jost, J., (2009). Response to commentaries on our paper Gene and genon concept: Coding vs. regulation. Theory in Biosciences, 128, 171–177.

    Article  Google Scholar 

  • Schölkopf, B., & Smola, A. (2002). Learning with kernels. Cambridge: MIT Press.

    Google Scholar 

  • Shalizi, C., & Moore, C. (2003). What is a macrostate? subjective observations and objective dynamics, Technical report. arXiv:cond-mat/0303625v1.

    Google Scholar 

  • Shannon, C., & Weaver, W. (1998). In R. Blahut & B. Hajek (Eds.), The mathematical theory of communication. Urbana: University of Illinois Press.

    Google Scholar 

  • Siegel, C., & Moser, J. (1971). Lectures on celestial mechanics. Berlin/New York: Springer.

    Book  Google Scholar 

  • Steffen, K., (1996). Hausdorff-Dimension, reguläre Mengen und total irreguläre Mengen (pp. 185–227). In E. Brieskorn (ed.), Felix Hausdorff zum Gedächtnis, Vieweg.

    Google Scholar 

  • Steinwart, I., & Christmann, A. (2008). Support vector machines. New York: Springer.

    Google Scholar 

  • Treschev, D., & Zubelevich, O. (2010). Introduction to the perturbation theory of Hamiltonian systems. Heidelberg/New York: Springer.

    Book  Google Scholar 

  • Tuckwell, H., & Jost, J. (2012). Analysis of inverse stochastic resonance and the long-term firing of Hodgkin-Huxley neurons with Gaussian white noise. Physica A, 391, 5311–5325.

    Article  Google Scholar 

  • van Fraassen, B. (1980). The scientific image. Oxford: Clarendon Press.

    Book  Google Scholar 

  • Weinberg, S. (1995/1996/2000). The quantum theory of fields (3 Vols.). Cambridge/New York: Cambridge University Press.

    Google Scholar 

  • Wibral, M., Vincente, R., & Lizier, J. (Eds.). (2014). Directed information measures in neuroscience. Heidelberg: Springer.

    Google Scholar 

  • Xia, Z. (1992). The existence of non-collision singularities in Newtonian systems. Annals of Mathematics, 135, 411–468.

    Article  Google Scholar 

  • Zinn-Justin, J.-J. (1993). Quantum field theory and critical phenomena (2nd ed.). Oxford/ New York: Oxford University Press.

    Google Scholar 

  • Zwieback, B. (2009). A first course in string theory (2nd ed.). New York: Cambridge University Press.

    Book  Google Scholar 

Download references

Acknowledgements

I am very grateful to my partners in the ZIF project, Philippe Blanchard, Martin Carrier, Andreas Dress, Johannes Lenhard and Michael Röckner, for their insightful comments and helpful suggestions which have contributed to shaping and sharpening the ideas presented here. Martin Carrier and Johannes Lenhard also provided very useful comments on an earlier version of my text. Some of my own work discussed here was supported by the ERC Advanced Grant FP7-267087 and the EU Strep “MatheMACS”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Jost .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jost, J. (2017). Object Oriented Models vs. Data Analysis – Is This the Right Alternative?. In: Lenhard, J., Carrier, M. (eds) Mathematics as a Tool. Boston Studies in the Philosophy and History of Science, vol 327. Springer, Cham. https://doi.org/10.1007/978-3-319-54469-4_14

Download citation

Publish with us

Policies and ethics