Skip to main content

Forcing Optimality and Brandt’s Principle

  • Chapter
  • First Online:
Mathematics as a Tool

Abstract

We argue that many optimization methods can be viewed as representatives of “forcing”, a methodological approach that attempts to bridge the gap between data and mathematics on the basis of an a priori trust in the power of a mathematical technique, even when detailed, credible models of a phenomenon are lacking or do not justify the use of this technique. In particular, we show that forcing is implied in particle swarms optimization methods, and in modeling image processing problems through optimization. From these considerations, we extrapolate a principle for general data analysis methods, what we call ‘Brandt’s principle’, namely the assumption that an algorithm that approaches a steady state in its output has found a solution to a problem, or needs to be replaced. We finally propose that biological systems, and other phenomena that respect general rules of morphogenesis, are a natural setting for the application of this principle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arfken, G. B., & Weber, H. J. (2005). Mathematical methods for physicists. Boston: Elsevier Academic Press.

    Google Scholar 

  • Bailey, K. D. (2006). Living systems theory and social entropy theory. Systems Research and Behavioral Science, 23, 291–300.

    Article  Google Scholar 

  • Berger, J. O. (2010). Statistical decision theory and Bayesian analysis. New York: Springer.

    Google Scholar 

  • Bhutada, G. G., Anand, R. S., & Saxena, S. C. (2012). PSO-based learning of sub-band adaptive thresholding function for image denoising. Signal, Image and Video Processing, 6(1), 1–7.

    Article  Google Scholar 

  • Boyd, S., & Lieven, V. (2004). Convex optimization. Cambridge/New York: Cambridge University Press.

    Book  Google Scholar 

  • Brandt, A. (2001). Multiscale scientific computation: Review 2001. In J. B. Timothy, T. F. Chan & R. Haimes (Eds.), Multiscale and multiresolution methods: Theory and applications. Berlin/New York: Springer.

    Google Scholar 

  • Brandt, A., & Livne, O. E. (2011). Multigrid techniques: 1984 guide with applications to fluid dynamics. Philadelphia: Society for Industrial and Applied Mathematics.

    Book  Google Scholar 

  • Bresson, X., Esedoḡlu, S., Vandergheynst, P., Thiran, J.-P., & Osher, S. (2007). Fast global minimization of the active contour/snake model. Journal of Mathematical Imaging and Vision, 28(2), 151–167.

    Article  Google Scholar 

  • Chen, S. S., Donoho, D. L., & Saunders, M. A. (2001). Atomic decomposition by basis pursuit. SIAM Review, 43(1), 129–159.

    Article  Google Scholar 

  • Delimata, P., & Suraj, Z. (2013). Hybrid methods in data classification and reduction. In A. Skowron & Z. Suraj (Eds.), Rough sets and intelligent systems – Professor Zdzisław Pawlak in memoriam. Intelligent Systems Reference Library, 43, 263–291.

    Google Scholar 

  • Donoho, D. L., Elad, M., & Temlyakov, V. N. (2006). Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transactions on Information Theory, 52(1), 6–18.

    Article  Google Scholar 

  • Donoho, D. L., & Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81(3), 425–455.

    Article  Google Scholar 

  • Donoho, D. L., & Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association, 90(432), 1200–1224.

    Article  Google Scholar 

  • Dorigo, M., et al. (2008). Particle swarm optimization. Scholarpedia, 3(11), 1486.

    Google Scholar 

  • Epstein, J. M. (2001). Learning to be thoughtless: Social norms and individual computation. Computational Economics, 18, 9–24.

    Article  Google Scholar 

  • Epstein, J. M. (2006). Generative social science: Studies in agent-based computational modeling. Princeton: Princeton University Press.

    Google Scholar 

  • Field, D. J. (1999). Wavelets, vision and the statistics of natural scenes. Philosophical Transactions of the Royal Society A, 357, 2527–2542.

    Article  Google Scholar 

  • Grenander, U., & Miller, M. (2007). Pattern theory: From representation to inference. Oxford: Oxford University Press.

    Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of statistical learning. New York: Springer.

    Book  Google Scholar 

  • Izenman, A. J. (2008). Modern multivariate statistical techniques: Regression, classification, and manifold learning. New York: Springer.

    Book  Google Scholar 

  • Kass, M., Witkin, A., & Terzopoulos, D. (1987). Snakes: Active contour models. International Journal of Computer Vision, 1(4), 321–331.

    Article  Google Scholar 

  • Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of the IEEE 978 International Conference on Neural Networks, Perth, WA (Vol. 4, pp. 1942–1948). New York: IEEE.

    Google Scholar 

  • Mallat, S. (2008). A wavelet tour of signal processing. San Diego: Academic Press.

    Google Scholar 

  • Miller, J. G. (1978). Living systems. New York: McGraw Hill.

    Google Scholar 

  • Minelli, A. (2011). A principle of Developmental Inertia. In B. Hallgrimsson & B. K. Hall (Eds.), Epigenetics: Linking genotype and phenotype in development and evolution. Berkeley, CA: University of California Press.

    Google Scholar 

  • Napoletani, D., Panza, M., & Struppa, D. C. (2011). Agnostic science. Towards a philosophy of data analysis. Foundations of Science, 16(19), 1–20.

    Article  Google Scholar 

  • Napoletani, D., Panza, M., & Struppa, D. C. (2013). Artificial diamonds are still diamonds. Foundations of Science, 18(3), 591–594.

    Article  Google Scholar 

  • Napoletani, D., Panza, M. & Struppa, D. C. (2013). Processes rather than descriptions? Foundations of Science, 18(3), 587–590.

    Article  Google Scholar 

  • Napoletani, D., Panza, M. & Struppa, D. C. (2014). Is big data enough? A reflection on the changing role of mathematics in applications. Notices of the American Mathematical Society, 61(5), 485–490.

    Article  Google Scholar 

  • Nasri, M., & Pour, H. N. (2009). Image denoising in the wavelet domain using a new adaptive thresholding function. Journal of Neurocomputing, 72, 1012–1025.

    Article  Google Scholar 

  • Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607–609.

    Article  CAS  Google Scholar 

  • Pedersen, M. E. H., & Chipperfield, A. J. (2010). Simplifying particle swarm optimization. Applied Soft Computing, 10(2), 618–628.

    Article  Google Scholar 

  • Poli, R. (2008). Analysis of the publications on the applications of particle swarm optimisation. Journal of Artificial Evolution and Applications. doi: 10.1155/2008/685175.

    Google Scholar 

  • Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model. Computer Graphics, 21(4), 25–34.

    Article  Google Scholar 

  • Wegener, I. (2005). Complexity theory: Exploring the limits of efficient algorithms. Berlin; New York: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Napoletani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Napoletani, D., Panza, M., Struppa, D.C. (2017). Forcing Optimality and Brandt’s Principle. In: Lenhard, J., Carrier, M. (eds) Mathematics as a Tool. Boston Studies in the Philosophy and History of Science, vol 327. Springer, Cham. https://doi.org/10.1007/978-3-319-54469-4_13

Download citation

Publish with us

Policies and ethics