Skip to main content

Future Directions

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSNONLINCIRC))

Abstract

In this chapter, we address the question: “Where do we go from here?” In the short term, we have the immediate concern of creating a set of devices with long effective lifetimes that can be put in production for broad commercial and industrial use. A next step could be the development of a device with dynamical order so that the fractional-order can be tuned on a real-time basis. Such development could lead to a generalization of Ohm’s law to include nonlinear memory devices. This all represents a huge array of challenges that will require skills across the broadest possible range of subject matter. To achieve this end, we need to incorporate fractional-order analysis into mainstream education, not just for the sake of fractional calculus, but to introduce the general population to the full power of the methods to addressing complex problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M.-S. Abdelouahab, R. Lozi, L.O. Chua, Memfractance: a mathematical paradigm for circuit elements with memory. Int. J. Bifurcat. Chaos 24(9), 1430023(29) (2014)

    Google Scholar 

  2. G.W. Bohannan, Analog fractional-order controller in temperature and motor control applications. J. Vib. Control 14(9–10), 1487–1498 (2008)

    Google Scholar 

  3. L.O. Chua, S.M. Kang, Memristive Devices Syst. 64(2), 209–223 (1976)

    Google Scholar 

  4. L.O. Chua, Nonlinear circuit foundations for nanodevices, part I: the four-element torus. Proc. IEEE 91(11), 1830–1859 (2003)

    Article  Google Scholar 

  5. R. Herrmann, Fractional Calculus: An Introduction for Physicists, 2nd edn. (World Scientific, NJ, 2014)

    Book  MATH  Google Scholar 

  6. C.F. Lorenzo, T.T. Hartley, Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. R.R. Nigmatullin, A.L. Mehaute, Section 10. Dielectric methods, theory and simulation: is there geometrical/physical meaning of the fractional integral with complex exponent? J. Non–Cryst. Solids 351, 2888–2899 (2005)

    Google Scholar 

  8. R.R. Nigmatullin, Theory of dielectric relaxation in non-crystalline solids: from a set of micromotions to the averaged collective motion in the mesoscale region. Phys. B. 358, 201–215 (2005)

    Article  Google Scholar 

  9. R.R. Nigmatullin, Fractional kinetic equations and universal decoupling of a memory function in mesoscale region. Phys. A. 363, 282–298 (2006)

    Article  Google Scholar 

  10. P. Pasierb, S. Komornicki, R. Gajerski, S. Koziński, P. Tomczyk, M. Rekas, Electrochemical gas sensor materials studied by impedance spectroscopy, Part I: Nasicon as a solid electrolyte. J. Electroceram. 8(1), 49–55 (2002)

    Google Scholar 

  11. H. Sun, H. Sheng, Y.-Q. Chen, W. Chen, On dynamic–order fractional dynamic system, arXiv:1103.0082v2 [math–ph], (10 pp.) (2011)

  12. J.A. Tenreiro Machado, Fractional generalization of memristor and higher order elements. Commun. Nonlinear Sci. Numer. Simulat. 18, 122–246 (2013)

    Google Scholar 

  13. J.A. Tenreiro Machado, F. Mainardi, V. Kiryakova, Fractional calculus: quo vadimus? (where are we going?) Contributions to round table discussion held at ICFDA 2014. Fractional Calc. Appl. Anal. 18(2), 495–526 (2015). doi:10.1515/fca-2015-0031

  14. J.A. Tenreiro Machado, Fractional-order junctions. Commun. Nonlinear Sci. Numer. Simul. 20(1), 1–8 (2015), http://dx.doi.org/10.1016/j.cnsns.2014.05.006

  15. J.A. Tenreiro Machado, Matrix fractional systems. Commun. Nonlinear Sci. Numer. Simul. 25(1–3) 10–18 (2015). doi:10.1016/j.cnsns.2015.01.00

  16. J.A. Tenreiro Machado, F. Mainardi, V. Kiryakova, T. Atanackovic, Fractional calculus: do venons-nous? Que sommes-nous? O allons-nous? (Contributions to round table discussion held at ICFDA 2016). FCAA—Fractional Calc. Appl. Anal.—Int. J. Theory Appl. 19(5), 1074–1104 (2016). doi:10.1515/fca-2016-0059

  17. J.A. Tenreiro Machado, Bond graph and memristor approach to DNA analysis. Nonlinear Dyn. (2016). doi:10.1007/s11071-016-3294-z

  18. J.A. Tenreiro Machado, A.M. Galhano, Generalized two-port elements. Commun. Nonlinear Sci. Numer. Simul. 42, 451–455 (2017)

    Google Scholar 

  19. V. Uchaikin, R. Sibatov, Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors, Dielectrics, and Nanosystems (World Scientific, Singapore, 2013)

    Google Scholar 

  20. B.J. West, Fractional Calculus View of Complexity: Tomorrow’s Science (CRC Press, Boca Raton, 2016)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Caponetto .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Biswas, K., Bohannan, G., Caponetto, R., Mendes Lopes, A., Tenreiro Machado, J.A. (2017). Future Directions. In: Fractional-Order Devices. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-54460-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54460-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54459-5

  • Online ISBN: 978-3-319-54460-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics