Future Directions

  • Karabi Biswas
  • Gary Bohannan
  • Riccardo CaponettoEmail author
  • António Mendes Lopes
  • José António Tenreiro Machado
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


In this chapter, we address the question: “Where do we go from here?” In the short term, we have the immediate concern of creating a set of devices with long effective lifetimes that can be put in production for broad commercial and industrial use. A next step could be the development of a device with dynamical order so that the fractional-order can be tuned on a real-time basis. Such development could lead to a generalization of Ohm’s law to include nonlinear memory devices. This all represents a huge array of challenges that will require skills across the broadest possible range of subject matter. To achieve this end, we need to incorporate fractional-order analysis into mainstream education, not just for the sake of fractional calculus, but to introduce the general population to the full power of the methods to addressing complex problems.


Fractional Calculus Circuit Element Current Operating Point Graduate Record Exam Generalize Impedance Convertor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.-S. Abdelouahab, R. Lozi, L.O. Chua, Memfractance: a mathematical paradigm for circuit elements with memory. Int. J. Bifurcat. Chaos 24(9), 1430023(29) (2014)Google Scholar
  2. 2.
    G.W. Bohannan, Analog fractional-order controller in temperature and motor control applications. J. Vib. Control 14(9–10), 1487–1498 (2008)Google Scholar
  3. 3.
    L.O. Chua, S.M. Kang, Memristive Devices Syst. 64(2), 209–223 (1976)Google Scholar
  4. 4.
    L.O. Chua, Nonlinear circuit foundations for nanodevices, part I: the four-element torus. Proc. IEEE 91(11), 1830–1859 (2003)CrossRefGoogle Scholar
  5. 5.
    R. Herrmann, Fractional Calculus: An Introduction for Physicists, 2nd edn. (World Scientific, NJ, 2014)CrossRefzbMATHGoogle Scholar
  6. 6.
    C.F. Lorenzo, T.T. Hartley, Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    R.R. Nigmatullin, A.L. Mehaute, Section 10. Dielectric methods, theory and simulation: is there geometrical/physical meaning of the fractional integral with complex exponent? J. Non–Cryst. Solids 351, 2888–2899 (2005)Google Scholar
  8. 8.
    R.R. Nigmatullin, Theory of dielectric relaxation in non-crystalline solids: from a set of micromotions to the averaged collective motion in the mesoscale region. Phys. B. 358, 201–215 (2005)CrossRefGoogle Scholar
  9. 9.
    R.R. Nigmatullin, Fractional kinetic equations and universal decoupling of a memory function in mesoscale region. Phys. A. 363, 282–298 (2006)CrossRefGoogle Scholar
  10. 10.
    P. Pasierb, S. Komornicki, R. Gajerski, S. Koziński, P. Tomczyk, M. Rekas, Electrochemical gas sensor materials studied by impedance spectroscopy, Part I: Nasicon as a solid electrolyte. J. Electroceram. 8(1), 49–55 (2002)Google Scholar
  11. 11.
    H. Sun, H. Sheng, Y.-Q. Chen, W. Chen, On dynamic–order fractional dynamic system, arXiv:1103.0082v2 [math–ph], (10 pp.) (2011)
  12. 12.
    J.A. Tenreiro Machado, Fractional generalization of memristor and higher order elements. Commun. Nonlinear Sci. Numer. Simulat. 18, 122–246 (2013)Google Scholar
  13. 13.
    J.A. Tenreiro Machado, F. Mainardi, V. Kiryakova, Fractional calculus: quo vadimus? (where are we going?) Contributions to round table discussion held at ICFDA 2014. Fractional Calc. Appl. Anal. 18(2), 495–526 (2015). doi: 10.1515/fca-2015-0031
  14. 14.
    J.A. Tenreiro Machado, Fractional-order junctions. Commun. Nonlinear Sci. Numer. Simul. 20(1), 1–8 (2015),
  15. 15.
    J.A. Tenreiro Machado, Matrix fractional systems. Commun. Nonlinear Sci. Numer. Simul. 25(1–3) 10–18 (2015). doi: 10.1016/j.cnsns.2015.01.00
  16. 16.
    J.A. Tenreiro Machado, F. Mainardi, V. Kiryakova, T. Atanackovic, Fractional calculus: do venons-nous? Que sommes-nous? O allons-nous? (Contributions to round table discussion held at ICFDA 2016). FCAA—Fractional Calc. Appl. Anal.—Int. J. Theory Appl. 19(5), 1074–1104 (2016). doi: 10.1515/fca-2016-0059
  17. 17.
    J.A. Tenreiro Machado, Bond graph and memristor approach to DNA analysis. Nonlinear Dyn. (2016). doi: 10.1007/s11071-016-3294-z
  18. 18.
    J.A. Tenreiro Machado, A.M. Galhano, Generalized two-port elements. Commun. Nonlinear Sci. Numer. Simul. 42, 451–455 (2017)Google Scholar
  19. 19.
    V. Uchaikin, R. Sibatov, Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors, Dielectrics, and Nanosystems (World Scientific, Singapore, 2013)Google Scholar
  20. 20.
    B.J. West, Fractional Calculus View of Complexity: Tomorrow’s Science (CRC Press, Boca Raton, 2016)zbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Karabi Biswas
    • 1
  • Gary Bohannan
    • 2
  • Riccardo Caponetto
    • 3
    Email author
  • António Mendes Lopes
    • 4
  • José António Tenreiro Machado
    • 5
  1. 1.Department of Electrical EngineeringIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Department of Physics and Materials ScienceUniversity of MemphisMemphisUSA
  3. 3.Department of Electrical, Electronics and Computer EngineeringUniversity of CataniaCataniaItaly
  4. 4.UISPA–LAETA/INEGIFaculty of Engineering, University of PortoPortoPortugal
  5. 5.Department of Electrical EngineeringInstitute of Engineering of Polytechnic of PortoPortoPortugal

Personalised recommendations