Advertisement

Fractional-Order Models of Vegetable Tissues

  • Karabi Biswas
  • Gary Bohannan
  • Riccardo CaponettoEmail author
  • António Mendes Lopes
  • José António Tenreiro Machado
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

In this chapter, we probe a bit further into the study of electrical impedance spectroscopy and what it can tell us about how nature does things. Vegetable matter can be thought of as nature’s fractional-order (FO) devices. They exhibit FO dynamics over a very wide frequency range. We investigate living tissue from the perspective of the electrochemist and electrical engineer. Such exploration can help make additional connections between distinct scientific areas.

Keywords

Fractional Derivative Wide Frequency Range Laplace Domain Complex Dielectric Permittivity Liouville Fractional Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Y. Ando, Y. Maeda, K. Mizutani, N. Wakatsuki, S. Hagiwara, H. Nabetani, Effect of air-dehydration pretreatment before freezing on the electrical impedance characteristics and texture of carrots. J. Food Eng. 169, 114–121 (2016)CrossRefGoogle Scholar
  2. 2.
    Y. Ando, K. Mizutani, N. Wakatsuki, Electrical impedance analysis of potato tissues during drying. J. Food Eng. 121, 24–31 (2014)CrossRefGoogle Scholar
  3. 3.
    E. Borges, A. Matos, J. Cardoso, C. Correia, T. Vasconcelos, N. Gomes, Early detection and monitoring of plant diseases by bioelectric impedance spectroscopy, in 2012 IEEE 2nd Portuguese Meeting in Bioengineering (ENBENG) (IEEE, 2012), pp. 1–4Google Scholar
  4. 4.
    C.J.F. Böttcher, O.C. van Belle, P. Bordewijk, A. Rip, Theory of Electric Polarization, vol. 2 (Elsevier Science Ltd, 1978)Google Scholar
  5. 5.
    Y. Cao, T. Repo, R. Silvennoinen, T. Lehto, P. Pelkonen, Analysis of the willow root system by electrical impedance spectroscopy. J. Exp. Bot. 62(1), 351–358 (2011)CrossRefGoogle Scholar
  6. 6.
    A. Chowdhury, T. Bera, D. Ghoshal, B. Chakraborty, Studying the electrical impedance variations in banana ripening using electrical impedance spectroscopy (EIS), in Third International Conference on Computer, Communication, Control and Information Technology (C3IT) (IEEE, 2015), pp. 1–4Google Scholar
  7. 7.
    K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9(4), 341–351 (1941)CrossRefGoogle Scholar
  8. 8.
    D. Davidson, R. Cole, Dielectric relaxation in glycerol, propylene glycol, and \(n\)-propanol. J. Chem. Phys. 19(12), 1484–1490 (1951)CrossRefGoogle Scholar
  9. 9.
    P. Debye, Interferenz von Röntgenstrahlen und Wärmebewegung. Ann. Phys. 348(1), 49–92 (1913)CrossRefGoogle Scholar
  10. 10.
    P.J.W. Debye, Polar Molecules (Chemical Catalog Company, Incorporated, 1929)Google Scholar
  11. 11.
    P. Dejmek, O. Miyawaki, Relationship between the electrical and rheological properties of potato tuber tissue after various forms of processing. Biosci. Biotechnol. Biochem. 66(6), 1218–1223 (2002)CrossRefGoogle Scholar
  12. 12.
    D. El Khaled, N. Castellano, J. Gazquez, R.G. Salvador, F. Manzano-Agugliaro, Cleaner quality control system using bioimpedance methods: a review for fruits and vegetables. J. Clean. Prod. (2015)Google Scholar
  13. 13.
    T. Ellis, W. Murray, L. Kavalieris, Electrical capacitance of bean (Vicia faba) root systems was related to tissue density—a test for the Dalton model. Plant Soil 366(1–2), 575–584 (2013)CrossRefGoogle Scholar
  14. 14.
    S. Emmert, M. Wolf, R. Gulich, S. Krohns, S. Kastner, P. Lunkenheimer, A. Loidl, Electrode polarization effects in broadband dielectric spectroscopy. Eur. Phys. J. B 83(2), 157–165 (2011)CrossRefGoogle Scholar
  15. 15.
    Y. Feldman, A. Puzenko, Y. Ryabov, Non-Debye dielectric relaxation in complex materials. Chem. Phys. 284(1), 139–168 (2002)CrossRefGoogle Scholar
  16. 16.
    T.J. Freeborn, A survey of fractional-order circuit models for biology and biomedicine. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(3), 416–424 (2013)CrossRefGoogle Scholar
  17. 17.
    T.J. Freeborn, B. Maundy, A.S. Elwakil, Cole impedance extractions from the step-response of a current excited fruit sample. Comput. Electron. Agric. 98, 100–108 (2013)CrossRefGoogle Scholar
  18. 18.
    H. Fröhlich, Theory of Dielectrics: Dielectric Constant and Dielectric Loss (Clarendon Press, 1958)Google Scholar
  19. 19.
    R. Garra, A. Giusti, F. Mainardi, G. Pagnini, Fractional relaxation with time-varying coefficient. Fract. Calc. Appl.Anal. 17(2), 424–439 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    R. Garrappa, F. Mainardi, G. Maione, Models of dielectric relaxation based on completely monotone functions. Fract. Calc. Appl. Anal. 19(5), 1105–1160 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    C. Greenham, Bruise and pressure injury in apple fruits. J. Exp. Bot. 17(2), 404–409 (1966)CrossRefGoogle Scholar
  22. 22.
    C. Greenham, K. Helms, W. Müller, Influence of virus inflections on impedance parameters. J. Exp. Bot. 29(4), 867–877 (1978)CrossRefGoogle Scholar
  23. 23.
    S. Havriliak, S. Negami, A complex plane analysis of \(\alpha \)-dispersions in some polymer systems. J. Polym. Sci. Part C: Polym. Symp. 14,99–117 (1966) (Wiley Online Library)Google Scholar
  24. 24.
    R. Hilfer, Analytical representations for relaxation functions of glasses. J. Non-Crystal. Solids 305(1), 122–126 (2002)CrossRefGoogle Scholar
  25. 25.
    I.S. Jesus, J.T. Tenreiro Machado, J.B. Cunha, Fractional electrical impedances in botanical elements. J. Vib. Control 14(9–10), 1389–1402 (2008)CrossRefzbMATHGoogle Scholar
  26. 26.
    X. Kou, L. Chai, L. Jiang, S. Zhao, S. Yan, Modeling of the permittivity of holly leaves in frozen environments. IEEE Trans. Geosci. Remote Sens. 53(11), 6048–6057 (2015)CrossRefGoogle Scholar
  27. 27.
    W. Kuang, S. Nelson, Dielectric relaxation characteristics of fresh fruits and vegetables from 3 to 20 GHz. J. Microwave Power Electromagn. Energy 32(2), 115–123 (1997)CrossRefGoogle Scholar
  28. 28.
    A. Laogun, N. Ajayi, Radio-frequency dielectric properties of some tropical african leaf vegetables. Technical report, International Centre for Theoretical Physics, Trieste (Italy) (1985)Google Scholar
  29. 29.
    S. Laufer, A. Ivorra, V.E. Reuter, B. Rubinsky, S.B. Solomon, Electrical impedance characterization of normal and cancerous human hepatic tissue. Physiol. Meas. 31(7), 995 (2010)CrossRefGoogle Scholar
  30. 30.
    A.M. Lopes, J.A. Tenreiro Machado, Dynamic analysis of earthquake phenomena by means of pseudo phase plane. Nonlinear Dyn. 74(4), 1191–1202 (2013)CrossRefGoogle Scholar
  31. 31.
    A.M. Lopes, J.A. Tenreiro Machado, Fractional order models of leaves. J. Vib. Control 20(7), 998–1008 (2014)MathSciNetCrossRefGoogle Scholar
  32. 32.
    A.M. Lopes, J.A. Tenreiro Machado, Modeling vegetable fractals by means of fractional-order equations. J. Vib. Control 22(8), 2100–2108 (2016)CrossRefGoogle Scholar
  33. 33.
    A.M. Lopes, J.A. Tenreiro Machado, E. Ramalho, On the fractional-order modeling of wine. Eur. Food Res. Technol. 1–9 (2016)Google Scholar
  34. 34.
    S. Mancuso, Seasonal dynamics of electrical impedance parameters in shoots and leaves related to rooting ability of olive (Olea europea) cuttings. Tree Physiol. 19(2), 95–101 (1999)CrossRefGoogle Scholar
  35. 35.
    B. Maundy, A. Elwakil, Extracting single dispersion Cole-Cole impedance model parameters using an integrator setup. Analog Integr. Circuits Signal Process. 71(1), 107–110 (2012)CrossRefGoogle Scholar
  36. 36.
    B. Maundy, A. Elwakil, A. Allagui, Extracting the parameters of the single-dispersion Cole bioimpedance model using a magnitude-only method. Comput. Electron. Agric. 119, 153–157 (2015)CrossRefGoogle Scholar
  37. 37.
    Y. Mizukami, K. Yamada, Y. Sawai, Y. Yamaguchi, Measurement of fresh tea leaf growth using electrical impedance spectroscopy. Agric. J. 2(1), 134–139 (2007)Google Scholar
  38. 38.
    F. Murtagh, A survey of recent advances in hierarchical clustering algorithms. Comput. J. 26(4), 354–359 (1983)CrossRefzbMATHGoogle Scholar
  39. 39.
    S.O. Nelson, S. Trabelsi, Factors influencing the dielectric properties of agricultural and food products. J. Microwave Power Electromagn. Energy 46(2), 93–107 (2012)CrossRefGoogle Scholar
  40. 40.
    R. Nigmatullin, S. Nelson, Recognition of the “fractional” kinetics in complex systems: dielectric properties of fresh fruits and vegetables from 0.01 to 1.8 GHz. Signal Process. 86(10), 2744–2759 (2006)CrossRefzbMATHGoogle Scholar
  41. 41.
    R. Nigmatullin, Y.E. Ryabov, Cole-Davidson dielectric relaxation as a self-similar relaxation process. Phys. Solid State 39(1), 87–90 (1997)CrossRefGoogle Scholar
  42. 42.
    V. Novikov, K. Wojciechowski, O. Komkova, T. Thiel, Anomalous relaxation in dielectrics. Equations with fractional derivatives. Mater. Sci. Wroclaw 23(4), 977 (2005)Google Scholar
  43. 43.
    S. Ohnishi, O. Miyawaki, Osmotic dehydrofreezing for protection of rheological properties of agricultural products from freezing-injury. Food Sci. Technol. Res. 11(1), 52–58 (2005)CrossRefGoogle Scholar
  44. 44.
    E.C. de Oliveira, F. Mainardi, J. Vaz Jr., Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics. Eur. Phys. J. Spec. Top. 193(1), 161–171 (2011)CrossRefGoogle Scholar
  45. 45.
    E.C. de Oliveira, F. Mainardi, J. Vaz Jr., Fractional models of anomalous relaxation based on the Kilbas and Saigo function. Meccanica 49(9), 2049–2060 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    H. Ozier-Lafontaine, T. Bajazet, Analysis of root growth by impedance spectroscopy (EIS). Plant Soil 277(1–2), 299–313 (2005)CrossRefGoogle Scholar
  47. 47.
    U. Pliquett, Bioimpedance: a review for food processing. Food Eng. Rev. 2(2), 74–94 (2010)CrossRefGoogle Scholar
  48. 48.
    T. Repo, S. Pulli, Application of impedance spectroscopy for selecting frost hardy varieties of english ryegrass. Ann. Bot. 78(5), 605–609 (1996)CrossRefGoogle Scholar
  49. 49.
    E.C. Rosa, E.C. de Oliveira, Relaxation equations: fractional models (2015), arXiv:1510.01681
  50. 50.
    Sibatov, R.T., Uchaikin, D.V.: Fractional relaxation and wave equations for dielectrics characterized by the Havriliak-Negami response function (2010), arXiv:1008.3972
  51. 51.
    A. Stanislavsky, K. Weron, J. Trzmiel, Subordination model of anomalous diffusion leading to the two-power-law relaxation responses. EPL (Europhys. Lett.) 91(4), 40,003 (2010)Google Scholar
  52. 52.
    M. Tiitta, L. Tomppo, H. Järnström, M. Löija, T. Laakso, A. Harju, M. Venäläinen, H. Iitti, L. Paajanen, P. Saranpää et al., Spectral and chemical analyses of mould development on Scots pine heartwood. Eur. J. Wood Wood Prod. 67(2), 151–158 (2009)CrossRefGoogle Scholar
  53. 53.
    K. Toyoda, R.N. Tsenkova, M. Nakamura, Characterization of osmotic dehydration and swelling of apple tissues by bioelectrical impedance spectroscopy. Drying Technol. 19(8), 1683–1695 (2001)CrossRefGoogle Scholar
  54. 54.
    J. Urban, R. Bequet, R. Mainiero, Assessing the applicability of the earth impedance method for in situ studies of tree root systems. J. Exp. Bot. 62(6), 1857–1869 (2011)Google Scholar
  55. 55.
    A. Väinölä, T. Repo, Impedance spectroscopy in frost hardiness evaluation of rhododendron leaves. Ann. Bot. 86(4), 799–805 (2000)CrossRefGoogle Scholar
  56. 56.
    Z. Vosika, M. Lazarević, J. Simic-Krstić, D. Koruga, Modeling of bioimpedance for human skin based on fractional distributed-order modified Cole model. FME Trans. 42(1), 74–81 (2014)CrossRefGoogle Scholar
  57. 57.
    T. Watanabe, T. Orikasa, H. Shono, S. Koide, Y. Ando, T. Shiina, A. Tagawa, The influence of inhibit avoid water defect responses by heat pretreatment on hot air drying rate of spinach. J. Food Eng. 168, 113–118 (2016)CrossRefGoogle Scholar
  58. 58.
    L. Wu, Y. Ogawa, A. Tagawa, Electrical impedance spectroscopy analysis of eggplant pulp and effects of drying and freezing-thawing treatments on its impedance characteristics. J. Food Eng. 87(2), 274–280 (2008)CrossRefGoogle Scholar
  59. 59.
    L. Wu, T. Orikasa, K. Tokuyasu, T. Shiina, A. Tagawa, Applicability of vacuum-dehydrofreezing technique for the long-term preservation of fresh-cut eggplant: effects of process conditions on the quality attributes of the samples. J. Food Eng. 91(4), 560–565 (2009)CrossRefGoogle Scholar
  60. 60.
    L. XiaoHong, H. TingLin, W. GuoDong, Z. Gang et al., Effect of salt stress on electrical impedance spectroscopy parameters of wheat (Triticum aestivum l.) leaves. J. Zhejiang Univ. (Agric. Life Sci.) 35(5), 564–568 (2009)Google Scholar
  61. 61.
    M. Zhang, T. Repo, J. Willison, S. Sutinen, Electrical impedance analysis in plant tissues: on the biological meaning of Cole-Cole \(\alpha \) in Scots pine needles. Eur. Biophys. J. 24(2), 99–106 (1995)CrossRefGoogle Scholar
  62. 62.
    M. Zhang, J. Willison, Electrical impedance analysis in plant tissues: the effect of freeze-thaw injury on the electrical properties of potato tuber and carrot root tissues. Can. J. Plant Sci. 72(2), 545–553 (1992)CrossRefGoogle Scholar
  63. 63.
    M. Zhang, J. Willison, Electrical impedance analysis in plant tissues. J. Exp. Bot. 44(8), 1369–1375 (1993)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Karabi Biswas
    • 1
  • Gary Bohannan
    • 2
  • Riccardo Caponetto
    • 3
    Email author
  • António Mendes Lopes
    • 4
  • José António Tenreiro Machado
    • 5
  1. 1.Department of Electrical EngineeringIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Department of Physics and Materials ScienceUniversity of MemphisMemphisUSA
  3. 3.Department of Electrical, Electronics and Computer EngineeringUniversity of CataniaCataniaItaly
  4. 4.UISPA–LAETA/INEGIFaculty of Engineering, University of PortoPortoPortugal
  5. 5.Department of Electrical EngineeringInstitute of Engineering of Polytechnic of PortoPortoPortugal

Personalised recommendations