• Karabi Biswas
  • Gary Bohannan
  • Riccardo CaponettoEmail author
  • António Mendes Lopes
  • José António Tenreiro Machado
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


In this chapter, we introduce some ideas for creating fractional-order devices. The reader will note variations in the descriptions of the devices, but regardless of the implementation, solid state, or liquid based, they share the same underlying fractional-order mathematical description. What is presented here is a sampling of construction methods developed so far.


Coating Thickness Constant Phase Element Phthalic Anhydride Lithium Nitrate Phase Ripple 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Adhikary, M. Khanra, S. Sen, K. Biswas, Realization of a carbon nanotube based electrochemical fractor, in IEEE International Symposium on Circuits and Systems (ISCAS’15), Lisbon, Portugal, May (2015), pp. 2329–2332Google Scholar
  2. 2.
    A. Adhikary, P. Sen, S. Sen, K. Biswas, Design and performance study of dynamic fractors in any of the four quadrants. Circuits Syst. Signal Process. 35(6), 1909–1932 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    A. Adhikary, G. Kumar, S. Bannerje, S. Sen, K. Biswas, Modelling and performance improvement of phase-angle-based conductivity sensor, in IEEE First International Conference on Control, Measurement and Instrumentation (CMI), Kolkata, India, Jan (2016), pp. 403–407Google Scholar
  4. 4.
    A. Adhikary, S. Sen, K. Biswas, Practical realization of tunable fractional order parallel resonator and fractional-order filters. IEEE Trans. Circuits Syst. I 63(8) (2016)Google Scholar
  5. 5.
    E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment and Applications, 2nd edn. (Wiley, Hoboken, New Jersey, 2005)CrossRefGoogle Scholar
  6. 6.
    J. Bisquert, A. Compte, Theory of electrochemical impedance of anomalous diffusion. J. Electroanal. Chem. 499, 112–120 (2001)CrossRefGoogle Scholar
  7. 7.
    J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, N.S. Ferriols, P. Bogdanoff, E.C. Pereira, Doubling exponent models for the analysis of porous film electrodes by impedance: relaxation of shape ti shape o\(_2\) nanoporous in aqueous solution. J. Phys. Chem. 104, 2287–2298 (2000)CrossRefGoogle Scholar
  8. 8.
    K. Biswas, S. Sen, P.K. Dutta, Realization of a constant phase element and its performance in a differentiator circuit. IEEE Trans. Circuits Syst. II 53(9), 802–806 (2006)CrossRefGoogle Scholar
  9. 9.
    K. Biswas, Studies on design, development and performance analysis of capacitive type sensors. Ph.D. Thesis, Indian Institute of Technology Kharagpur, India, Department of Electrical Engineering—India (2007)Google Scholar
  10. 10.
    H. Bode, Network Analysis and Feedback Amplifier Design (Van Nostrand, New York, 1945)Google Scholar
  11. 11.
    C. Bonomo, L. Fortuna, P. Giannone, S. Graziani, S. Strazzeri, A nonlinear model for ionic polymer metal composites as actuators. Smart Mater. Struct. 16, 1–12 (2007)CrossRefGoogle Scholar
  12. 12.
    R. Caponetto, D. Porto, Analog implementation of non integer order integrator via field programmable analog array, in FDA’06: Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and Its Applications, Porto, Portugal (2006), pp. 170–173Google Scholar
  13. 13.
    R. Caponetto, S. Graziani, F.L. Pappalardo, F. Sapuppo, Experimental characterization of ionic polymer metal composite as a novel fractional-order element. Adv. Math. Phys. 2013, 1–10 (2013)Google Scholar
  14. 14.
    R. Caponetto, D.G. Dongola, L. Fortuna, A. Gallo, New results on the synthesis of FO-PID controllers. Commun. Nonlinear Sci. Numer. Simul. 15, 997–1007 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    R. Caponetto, G. Dongola, L. Fortuna, S. Graziani, S. Strazzeri, A fractional model for IPMC actuators, in IEEE International Instrumentation and Measurement Technology Conference, Canada (2008)Google Scholar
  16. 16.
    Y.-Q. Chen, K.L. Moore, Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circuits Sys.–I: Fund. Theory Appl. 49(3), 363–367 (2002)Google Scholar
  17. 17.
    Y.-Q. Chen, B.M. Vinagre, I. Podlubny, Continued fraction expansion approaches to discretizing fractional-order derivatives—an expository review. Nonlinear Dyn. 38, 155–170 (2004)Google Scholar
  18. 18.
    W.S. Chu, K.T. Lee, Review of biomimetic underwater robots using smart actuators. Int. J. Precis. Eng. Manuf. 7, 1281–1292 (2012)CrossRefGoogle Scholar
  19. 19.
    S. Cole, R. Cole, Dispersion and absorption in dielectrics. J. Chem. Phys. 9, 341–351 (1941)CrossRefGoogle Scholar
  20. 20.
    M. Ding, L. Wang, P. Wang, Changes in electrical resistance of carbon-black filled silicone rubber composite during compression. J. Polym. Sci. Part B: Polym. Phys. 45(19), 2700–2706 (2007)CrossRefGoogle Scholar
  21. 21.
    A.M. Elshurafa, M.N. Almadhoun, K.M. Salama, N.H. Alshareel, Microscopic electrostatic fractional capacitors using reduced graphene oxide percolated polymer composites. Appl. Phys. Lett. 102, (232901(4 pp)) (2013)Google Scholar
  22. 22.
    M. Furlani, M.C. Stappen, B.E. Mellander, G.A. Niklasson, Concentration dependence of ionic relaxation in lithium doped polymer electrolytes. J. Non-Cryst. Solids 356, 710–714 (2010)CrossRefGoogle Scholar
  23. 23.
    P. Giannone, S. Graziani, E. Umana, Investigation of carbon black loaded natural rubber piezoresistivity, in Proceedings of IEEE I2MTC (2015), pp. 1477–1481Google Scholar
  24. 24.
    T.C. Haba, G. Ablart, T. Camps, The frequency response of a fractal photolithographic structure. IEEE Trans. Dielectr. Electr. Insul. 4(3), 321–326 (1997)CrossRefGoogle Scholar
  25. 25.
    T.C. Haba, G. Ablart, T. Camps, F. Olivie, Influence of the electrical parameters on the input impedance of a fractal structure realised on silicon. Chaos, Solitons Fractals 24, 479–490 (2005)CrossRefGoogle Scholar
  26. 26.
    T.S. Jesus, J.A.T. Machado, Development of fractional-order capacitors based on electrolyte processes. Nonlinear Dyn. 56(1), 45–55 (2009)Google Scholar
  27. 27.
    R.M. Lerner, The design of a constant-angle or power-law magnitude impedance. IEEE Trans. Circuit Theory 98–107 (1963)Google Scholar
  28. 28.
    C. Longfei, C. Hualing, Z. Zicai, A structure model for ionic polymer-metal composite (IPMC), in Proceedings of SPIE 8340, Electroactive Polymer Actuators and Devices (EAPAD) (2012)Google Scholar
  29. 29.
    D. Mondal, K. Biswas, Performance study of fractional order integrator using single-component fractional-order element. IET Circuits, Devices, Syst. 5(4), 334–342 (2011)Google Scholar
  30. 30.
    D. Mondal, Fabrication and performance studies of PMMA—coated fractional-order elements, Master’s thesis, Indian Institute of Technology Kharagpur, India, Department of Electrical Engineering, Nov (2012)Google Scholar
  31. 31.
    D. Mondal, K. Biswas, Packaging of single component fractional-order element. IEEE Trans. Device Mater. Rel. 13(1), 73–80 (2013)Google Scholar
  32. 32.
    C.A. Monje, Y.-Q. Chen, B.M. Vinagre, D. Xue, V. Feliu, Fractional-Order Systems and Controls: Fundamentals and Applications. A Monograph in the Advances in Industrial Control Series (Springer, Berlin, 2010)Google Scholar
  33. 33.
    K.B. Oldham, Semintegral electroanalysis: analog implementation. Anal. Chem. 45, 39–47 (1973)Google Scholar
  34. 34.
    A. Oustaloup, P. Lanusse, P. Melchior, X. Moreau, J. Sabatier, J.L. Thomas, A survey of the CRONE approach, in Conference Proceedings 1st IFAC Workshop on Fractional Differentiation and its Applications FDA’04 (Bordeaux, FR, 2004)Google Scholar
  35. 35.
    P. Pasierb, S. Komornicki, R. Gajerski, S. Koziński, P. Tomczyk, M. Rekas, Electrochemical gas sensor materials studied by impedance spectroscopy, Part I: Nasicon as a solid electrolyte. J. Electroceram. 8, 49–55 (2002)CrossRefGoogle Scholar
  36. 36.
    I. Petráš, B.M. Vinagre, Practical application of digital fractional-order controller to temperature control. Acta Montanist. Slovaca 7, 131–137 (2002)Google Scholar
  37. 37.
    I. Podlubny, I. Petrás̆, B.M. Vinagre, P. O’Leary, L. Dorc̆ák, Analog realizations of fractional-order controllers. Nonlinear Dyn. 29, 281–296 (2002)Google Scholar
  38. 38.
    D. Pugal, K.A. Jung, A. Aabloo, K.J. Kim, Ionioc polymer-metal composite mechanoelectrical tranduction: review and perspectives. Polym. Int. 59, 279–289 (2009)CrossRefGoogle Scholar
  39. 39.
    S.C.D. Roy, On the realization of a constant-argument immitance or fractional operator. IEEE Trans. Circuit Theory CT-14, 264–274 (1967)Google Scholar
  40. 40.
    H. Samavati, Fractal capacitors. IEEE J. Solid-State Circuits 33(10), 2035–2041 (1998)CrossRefGoogle Scholar
  41. 41.
    M. Shahinpoor, J. Kim, Ionic polymer-metal composites: I. Fundamentals. Smart Mater Struct. 10, 819–33 (2001)Google Scholar
  42. 42.
    M. Shahinpoor, Y. Bar-Cohen, Y. Simpson, J. Smith, Ionic polymer-metal composites (IPMC) as biomimetic sensors, actuators, and artificial muscle—a review. Smart Mater. Struct. 7, R15–30 (1998)CrossRefGoogle Scholar
  43. 43.
    M. Shainpoor, K.J. Kim, Ionic polymer-metal composites: IV. Industrial and medical applications. Smart Mater. Struct. 14, 197–214 (2005)CrossRefGoogle Scholar
  44. 44.
    D. Sierociuk, I. Podlubny, I. Petrás̆, Experimental evidence of variable-order behavior of ladders and nested ladders. IEEE Trans. Control Syst. Tech. 21(2), 459–466 (2013)Google Scholar
  45. 45.
    M.C. Tripathy, D. Mondal, K. Biswas, S. Sen, Design and performance study of phase-locked loop (shape PLLS) using fractional-order loop filter. Int. J. Circuit Theory Appl. 43(6), 776–792 (2015)CrossRefGoogle Scholar
  46. 46.
    M. Tripathy, K. Biswas, S. Sen, A design example of a fractional-order Kerwin-Huelsman-Newcomb biquad filter with two fractional capacitors of different order. Circuits, Syst. Sig. Process. 32(4), 1523–1536 (2013)MathSciNetCrossRefGoogle Scholar
  47. 47.
    M.C. Tripathy, D. Mondal, K. Biswas, S. Sen, Experimental studies on realization of fractional inductors and fractional-order bandpass filters. Int. J. Circuit Theory Appl. 43(9), 1183–96 (2015)CrossRefGoogle Scholar
  48. 48.
    G. Tsirimokou, C. Psychalinos, A. Elwakil, Digitally programmed fractional-order Cheby-shev filters realizations using current-mirrors, in 2015 International Symposium on Circuits and Systems (ISCAS’15), 24–27 May 2015, Lisbon, pp. 2337–2340Google Scholar
  49. 49.
    B.M. Vinagre, Y.-Q. Chen, I. Petrás̆, Two direct Tustin discretization methods for fractional-order diferentiator/integrator. J. Franklin Inst. 340, 349–362 (2003)Google Scholar
  50. 50.
    P. Wang, T. Ding, Creep of electrical resistance under uniaxial pressures for carbon black-silicone rubber composite. J. Mater. Sci. 45, 3595–3601 (2010)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Karabi Biswas
    • 1
  • Gary Bohannan
    • 2
  • Riccardo Caponetto
    • 3
    Email author
  • António Mendes Lopes
    • 4
  • José António Tenreiro Machado
    • 5
  1. 1.Department of Electrical EngineeringIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Department of Physics and Materials ScienceUniversity of MemphisMemphisUSA
  3. 3.Department of Electrical, Electronics and Computer EngineeringUniversity of CataniaCataniaItaly
  4. 4.UISPA–LAETA/INEGIFaculty of Engineering, University of PortoPortoPortugal
  5. 5.Department of Electrical EngineeringInstitute of Engineering of Polytechnic of PortoPortoPortugal

Personalised recommendations