Introduction to Fractional-Order Elements and Devices

  • Karabi Biswas
  • Gary Bohannan
  • Riccardo CaponettoEmail author
  • António Mendes Lopes
  • José António Tenreiro Machado
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


We introduce the motivation for the development of fractional-order elements (FOE) and fractional-order devices (FOD) derived from them. Short introductions to some of the material science and engineering applications are presented along with an introduction into the fractional calculus which has proven to be highly effective in modeling complex systems. We explore the questions of “why power–law” and “how is it useful”? Finally we introduce the concept of a fractional-order device and how it can be included in an electronic control circuit.


Fractional Calculus Constant Phase Element Integer Order Impedance Magnitude Integer Order Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment and Applications, 2nd edn. (Wiley, Hoboken, New Jersey, 2005)CrossRefGoogle Scholar
  2. 2.
    H. Bode, Network Analysis and Feedback Amplier Design (Van Nostrand, New York, 1945)Google Scholar
  3. 3.
    G.W. Bohannan, in Application of fractional calculus to polarization dynamics in solid dielectric materials. Ph.D. Thesis, Montana State University—Bozeman (2000)Google Scholar
  4. 4.
    G.W. Bohannan, Analog realization of a fractional controller, revisited, in Tutorial Workshop 2: Fractional Calculus Applications in Automatic Control and Robotics, Las Vegas, USA, ed. by B.M. Vinagre, Y.Q. Chen (2002), pp. 175–182Google Scholar
  5. 5.
    G.W. Bohannan, Analog fractional order controller in temperature and motor control applications. J. Vibr. Control 14(9–10), 1487–1498 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    R. Caponetto, D. Porto, Analog implementation of non integer order integrator via eld programmable analog array, in FDA’06: Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and its Applications, Porto, Portugal (2006), pp. 170–173Google Scholar
  7. 7.
    G.E. Carlson, C.A. Halijak, Simulation of the fractional derivative operator \(\sqrt{s}\) and the fractional integral operator \(1/\sqrt{s}\), in Central States Simulation Council Meeting on Extrapolation of Analog Computation Methods, Kansas State University, vol. 45, no. 7 (1961), pp. 1–22Google Scholar
  8. 8.
    Y.-Q. Chen, K.L. Moore, Discretization schemes for fractional–order differentiators and integrators. IEEE Trans. Circuits Syst.–I: Fund. Theory Appl. 49(3), 363–367 (2002)Google Scholar
  9. 9.
    Y.-Q. Chen, B.M. Vinagre, I. Podlubny, Continued fraction expansion approaches to discretizing fractional order derivatives-an expository review. Nonlinear Dyn. 38, 155–170 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Y.Q. Chen, Tuning methods for fractional–order controllers, U.S. Patent 7,599,752Google Scholar
  11. 11.
    K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics, J. Chem. Phys. 9, 341–351 (1941)Google Scholar
  12. 12.
    P. Debye, Polar Molecules (Chemical Catalogue Company, New York, 1929)zbMATHGoogle Scholar
  13. 13.
    W. Feller, An Introduction to Probability Theory and Its Applications, vol. II (Wiley, New York, 1966)Google Scholar
  14. 14.
    M. Filoche, M. Sapoval, Transfer across random versus deterministic interfaces. Phys. Rev. Let. 84(25), 5776–5779 (2000)CrossRefGoogle Scholar
  15. 15.
    P. Grigolini, A. Rocco, B.J. West, Fractional calculus as a macroscopic manifestation of randomness. Phys. Rev. E. 59(3), 2603–2613 (1999)CrossRefGoogle Scholar
  16. 16.
    A. Janicki, A. Weron, Simulation and Chaotic Behavior of \(\alpha \)-Stable Stochastic Processes (Dekker, New York, 1994)Google Scholar
  17. 17.
    A.K. Jonscher, The “universal” dielectric response. Nature 267, 673–679 (1977)CrossRefGoogle Scholar
  18. 18.
    A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983)Google Scholar
  19. 19.
    S. Manabe, The non-integer integral and its application to control systems. Jpn. Inst. Electr. Eng. J. 80(860), 589–597 (1960)Google Scholar
  20. 20.
    T. Nonnenmacher, W. Glöckle, A fractional model for mechanical stress relaxation. Phil. Mag. Lett. 64(2), 89–93 (1991)CrossRefGoogle Scholar
  21. 21.
    K. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order (Academic Press, New York, 1974)zbMATHGoogle Scholar
  22. 22.
    A. Oustaloup, B. Mathieu, P. Lannusse, The CRONE control of resonant plants: application to a fexible transmission. Eur. J. Control 1(2) (1995)Google Scholar
  23. 23.
    A. Oustaloup, P. Lanusse, P. Melchior, X. Moreau, J. Sabatier, J.L. Thomas, A survey of the CRONE approach, in Conference Proceedings 1st IFAC Workshop on Fractional Differentiation and its Applications FDA04, (2 part) (2004)Google Scholar
  24. 24.
    C.M.A. Pinto, A.M. Lopes, J.A. Tenreiro Machado, A review of power laws in real life phenomena, Commun. Nonlinear Sci. Numer. Simulat. 17(9), 3558–3578 (2012)Google Scholar
  25. 25.
    I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, Mathematics in Science and Engineering, vol. 198 (Academic Press, San Diego, CA, 1999)Google Scholar
  26. 26.
    I. Podlubny, I. Petráš, B.M. Vinagre, P. O’Leary, L. Dorc̆ák, Analog realizations of fractional-order controllers, Nonlinear Dyn. 29, 281–296 (2002)Google Scholar
  27. 27.
    J. Sabatier, M. Merveillaut, R. Malti, A. Oustaloup, How to impose physically coherent initial conditions to a fractional system? Commun. Nonlinear Sci. Numer. Simul. 15, 1318–1326 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    J. Sakurai, Modern Quantum Mechanics, Revised edn. (Supplement II, Addison-Wessley, Reading, PA, 1994)Google Scholar
  29. 29.
    H.V. Schmidt, J.E. Drumheller, Dielectric properties of lithium hydrazinium sulfate. Phys. Rev. B. 4(12), 4582–4597 (1971)CrossRefGoogle Scholar
  30. 30.
    J.A. Tenreiro Machado, Theory of fractional integrals and derivatives: application to motion control, in ICRAM95—IEEE/IFAC/ASME/JSME International Conference on Recent Advances in Mechatronics, 14–16 Aug 1995, Istanbul, Turkey (1995), pp. 1086–1091Google Scholar
  31. 31.
    J.A. Tenreiro Machado, Analysis and design of fractional-order digital control systems, Syst. Anal. Model. Simul. 27(2–3), 107–122 (1997)Google Scholar
  32. 32.
    J.A. Tenreiro Machado, Fractional-order derivative approximations in discrete-time control systems, Syst. Anal. Model. Simul. 34, 419–434 (1999)Google Scholar
  33. 33.
    J.A. Tenreiro Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. Elsevier, 16(3), 1140–1153 (2011)Google Scholar
  34. 34.
    J.A. Tenreiro Machado, Shannon Information and Power Law Analysis of the Chromosome Code, Abstract and Applied Analysis, Hindawi, vol. 2012, Article ID 439089, (13 pp.) (2012)Google Scholar
  35. 35.
    J.A. Tenreiro Machado, C.M.A. Pinto, A.M. Lopes, A review on the characterization of signals and systems by power law distributions. Signal Process. 107, 246–253 (2015)Google Scholar
  36. 36.
    J.A. Tenreiro Machado, Matrix fractional systems. Commun. Nonlinear Sci. Numer. Simulat. 25, 1018 (2015)Google Scholar
  37. 37.
    V. Uchaikin, R. Sibatov, Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors (Dielectrics and Nanosystems, World Scientific, Singapore, 2013)CrossRefzbMATHGoogle Scholar
  38. 38.
    D. Valério, J.A. Tenreiro Machado, V. Kiryakova, Some pioneers of the applications of fractional calculus. Fractional Calc. Appl. Anal. 17(2), 552–578 (2014). doi: 10.2478/s13540-014-0185-1
  39. 39.
    E. Warburg, Uber das Verhalten sogenannter unpolarisierbarer Electroden gegen Wechselstrom. Ann. Phys. Chem. 67, 493–499 (1899)CrossRefzbMATHGoogle Scholar
  40. 40.
    B.J. West, Physiology, Promiscuity and Prophecy at the Millennium: A Tale of Tails (World Scientific, Singapore, 1999)CrossRefzbMATHGoogle Scholar
  41. 41.
    B.J. West, Fractional Calculus View of Complexity: Tomorrow’s Science (CRC Press, Boca Raton, 2016)zbMATHGoogle Scholar
  42. 42.
    S. Westerlund, Dead matter has memory. Phys. Scr. 43, 174–179 (1991)CrossRefGoogle Scholar
  43. 43.
    S. Westerlund, L. Ekstam, Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1(5), 826–839 (1994)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Karabi Biswas
    • 1
  • Gary Bohannan
    • 2
  • Riccardo Caponetto
    • 3
    Email author
  • António Mendes Lopes
    • 4
  • José António Tenreiro Machado
    • 5
  1. 1.Department of Electrical EngineeringIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Department of Physics and Materials ScienceUniversity of MemphisMemphisUSA
  3. 3.Department of Electrical, Electronics and Computer EngineeringUniversity of CataniaCataniaItaly
  4. 4.UISPA–LAETA/INEGIFaculty of Engineering, University of PortoPortoPortugal
  5. 5.Department of Electrical EngineeringInstitute of Engineering of Polytechnic of PortoPortoPortugal

Personalised recommendations