Skip to main content

On Spatial Cognition and Mobility Strategies

  • Chapter
  • First Online:
Mobility of Visually Impaired People

Abstract

People acquire spatial knowledge by physically experiencing the environment through locomotion. Spatial knowledge generally emerges from the interactions between the specific types of sensory data and the cognitive strategies involved in locomotion. This chapter reviews the fundamental concepts and evidences of spatial cognition. First, the interplay between visual data and mobility is addressed. The importance of landmarks and visual cues is highlighted for implementing both simple and complex navigation strategies such as path integration (PI), landmark-based, and geometry-based, which are the main cognitive mechanisms for spatial learning. Some neural evidences of spatial cognition are given to underline the brain mechanisms involved in cognitive mapping. A review of relevant literature models on cognitive mapping is also presented to better understand how spatial representations are formed at the level of the brain. The chapter provides some insights on how to adapt all these concepts for mobility and spatial knowledge assistance of people with visual impairments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Held R, Hein A (1963) Movement-produced stimulation in the development of visually guided behaviour. J Comp Physiol Psychol 56(5):872–876

    Google Scholar 

  2. Gallistel CR (1990) The organization of learning. MIT Press, Cambridge

    MATH  Google Scholar 

  3. Berthoz A (2000) The brain’s sense of movement. Harvard University Press, Cambridge

    Google Scholar 

  4. Tversky B (1993) Cognitive maps, cognitive collages, and spatial mental models. In: Frank AU, Campari I (eds) Spatial information theory: a theoretical basis for GIS, Proceedings of COSIT’93. Lecture notes in computer science, vol 716. Springer, Berlin, pp 14–24

    Google Scholar 

  5. Tversky B (2001) Spatial schemas in depictions. In: Gattis M (ed) Spatial schemas and abstract thought, MIT Press, Cambridge

    Google Scholar 

  6. Tversky B (2005) Functional significance of visuospatial representations. In: Shah P, Miyake A (eds) Handbook of higher-level visuospatial thinking. Cambridge University Press, Cambridge, pp 1–34

    Google Scholar 

  7. Gibson JJ (1950) The perception if visual surfaces. Am J Psychol 63:367–384

    Article  Google Scholar 

  8. Lee DN (1980) The optic flow field: the foundation of vision. Philos Trans Roy Soc Lond B Biol Sci 290:169–179

    Article  Google Scholar 

  9. Johansson G (1977) Studies of visual perception on locomotion. Perception 6:365–376

    Article  Google Scholar 

  10. Landy MS, Dosher BA, Sperling G, Perkins ME (1991) The kinetic depth effect and optic-flow—II. First- and second-order motion. Vis Res 31:859–876

    Article  Google Scholar 

  11. Kearns MJ, Warren WH, Duchon AP, Tarr MJ (2002) Path integration from optic flow and body senses in a homing task. Perception 31:348–374

    Article  Google Scholar 

  12. Kirschen MP, Kahana MJ, Sekuler R, Burack B (2000) Optic flow helps humans learn to navigate through synthetic environments. Perception 29:801–818

    Article  Google Scholar 

  13. Golomer E, Crémieux J, Dupui P, Isableu B, Ohlmann T (1999) Visual contribution to self-induced body sway frequencies and visual perception of male professional dancers. Neurosci Lett 267:189–192

    Article  Google Scholar 

  14. Israël I, Fetter M, Koenig E (1993) Vestibular perception of passive whole-body rotation about horizontal and vertical axes in humans: goal-directed vestibule-ocular reflex and vestibular memory-contingent saccades. Exp Brain Res 96:335–346

    Article  Google Scholar 

  15. Lejeune L, Anderson DI, Campos JJ, Witherington DC, Uchiyama I, Barbu-Roth M (2006) Responsiveness to terrestrial optic flow in infancy: does locomotor experience play a role? Hum Mov Sci 25:4–17

    Article  Google Scholar 

  16. Nomura Y, Mulavara A, Richards J, Brady R, Bloomberg J (2005) Optic flow dominates visual scene polarity in causing adaptive modification of locomotor trajectory. Cogn Brain Res 25:624–631

    Article  Google Scholar 

  17. Warren WH Jr, Kay BA, Zosh WD, Duchon AP, Sahuc S (2001) Opic flow is used to control human walking. Nat Neurosci 4:213–216

    Article  Google Scholar 

  18. Konczak J (1994) Effects of optic flow on the kinematics of human gait: a comparison of young and older adults. J Mot Behav 26:225–236

    Article  Google Scholar 

  19. Bertin RJ, Israel I (2005) Optic-flow-based perception of two-dimensional trajectories and the effects of a single landmarks. Perception 34:453–475

    Article  Google Scholar 

  20. Ohmi M (1996) Egocentric perception through interaction among many sensory systems. Brain Res Cogn Brain Res 5:87–96

    Article  Google Scholar 

  21. van den Berg AV, Brenner E (1994) Humans combine the optic flow with static depth cues for robust perception of heading. Vis Res 34:2153–2167

    Article  Google Scholar 

  22. Bakker NH, Werkhoven PJ, Passenier PO (1999) The effects of proprioceptive and visual feedback on geographical orientation in virtual environments. Presence Teleoperators Virtual Environ 8:36–53

    Article  Google Scholar 

  23. Frenz H, Lappe M (2005) Absolute travel distance from otic flow. Vis Res 45:1679–1692

    Article  Google Scholar 

  24. Kellman PJ, Kaiser MK (1995) Extracting object motion during observe motion: combining constraints from optic flow and binocular disparity. J Opt Soc Am A Opt Image Sci Vis 12:623–625

    Google Scholar 

  25. Prevost P, Ivanennko Y, Grasso R, Berthoz A (2002) Spatial invariance in anticipatory orienting behavior during human navigation. Neurosci Lett 339:243–247

    Article  Google Scholar 

  26. Macuga KL, Loomis JK, Beall AC, Kelly JW (2006) Perception of heading without retinal optic flow. Percept Psychophys 68:872–878

    Article  Google Scholar 

  27. Assaiante C, Marchand AR, Amblard B (1989) Discrte visual samples may control locomotor equilibrium and foot positioning in man. J Mot Behav 21:72–91

    Article  Google Scholar 

  28. Azulay JP, Mesure S, Blin O (2006) Influence of visual cues on gait in Parkinson’s disease: contribution to attention or sensory dependence? J Neurol Sci 248:192–195

    Article  Google Scholar 

  29. Philbeck JW, Klatzky RL, Behrmann M, Loomis JM, Goodridge J (2001) Active control of locomotion facilitates nonvisual navigation. J Exp Psychol Hum Percept Performance 27:141–153

    Google Scholar 

  30. Rietdyk S, Rhea CK (2006) Control of adaptive locomotion: effect of visual obstruction and visual cues in the environment. Exp Brain Res 169:272–278

    Article  Google Scholar 

  31. Harris JM, Drga VF (2005) Using visual direction in three-dimensional motion perception. Nat Neurosci 8:229–233

    Article  Google Scholar 

  32. Spiers HJ, Burgess N, Hartley T, Vargha-Khadem F, O’Keef J (2001) Bilateral hippocampal pathology impairs topographical and episodic memory but non visual pattern matching. Hippocampus 11:715–725

    Article  Google Scholar 

  33. Jacobs RA (2002) What determines visual cues reliability? Trends Cogn Sci 6:345–350

    Article  Google Scholar 

  34. Breuneval A (2016) Canne blanche: outil pour les déplacements d’un déficient visuel, Rapport, U. de Rouen Normandie, France (congenitally blind researcher)

    Google Scholar 

  35. Cornell EH, Bourassa CM (2007) Human non-visual discrimination of gradual turning is poor. Psychol Res 71:314–312

    Google Scholar 

  36. Pissaloux E, Velázquez R, Hersh M, Uzan G (2016) Towards a cognitive model of human mobility: an investigation of tactile perception for use in mobility devices. J Navig 6:1–17

    Google Scholar 

  37. Maingreaud F, Pissaloux E, Gelin R, Leroux Ch (2005) Towards the understanding of the obstacle perception by visually handicapped: a visuo-tactile approach. ASME Int J Adv Model C 65(7/8):1–12

    Google Scholar 

  38. Berthoz A, Pavard B, Young L (1975) Perception of linear horizontal self motion induced by peripheral vision (linear vection). Exp Brain Res 23:471–489

    Google Scholar 

  39. Loomis JM, Klatzky RL, Golledge RG, Cicinelli JG, Pellegrino JW, Fry PA (1993) Nonvisual navigation by blind and sighted: assessment of path integration ability. J Exp Psychol Gen 122(1):73–91

    Google Scholar 

  40. Marlinsky VV (1999) Vestibular and vestibule-perceptive perception of motion in the horizontal plane in blindfolded man—III. Route inference. Neuroscience 90:403–411

    Article  Google Scholar 

  41. Pissaloux E, Chen Y, Velazquez R (2010) Image matching optimisation via vision and inertial data fusion. Int J Image Graph 10(4):545–555

    Google Scholar 

  42. Berthoz A (2000) The brain’s sense of movement. Harward University Press, Cambridge

    Google Scholar 

  43. Waller D, Greenauer N (2007) The role of body-based sensory information in the acquisition of enduring spatial representation. Psychol Res 71:322–332

    Article  Google Scholar 

  44. Li L, Sweet BT, Stone LS (2006) Humans can perceive heading without visual path information. J Vis 6:874–881

    Google Scholar 

  45. Rieser JJ, Ashmead DH, Talor CR, Youngquist GA (1990) Visual perception and the guidance of locomotion without vision to previously seen targets. Perception 19(5):675–689

    Article  Google Scholar 

  46. Siegler I, Israel I, Berthoz A (1998) Shift of the beating field of vestibular nystagmus: an orientation strategy? Neurosci Lett 254:93–96

    Article  Google Scholar 

  47. Israel I, Capelli A, Priot A-E, Giannopulu I (2013) Spatial linear navigation: is vision necessary? Neurosci Lett 25(554):34–38

    Google Scholar 

  48. Lackner JR (1988) Some proprioceptive influences on the perceptual representation of body shape and orientation. Brain 111:281–297

    Article  Google Scholar 

  49. Sun HJ, Campos JL, Chan GS (2004) Multisensory integration in the estimation of relative path length. Exp Brain Res 154:246–254

    Article  Google Scholar 

  50. Bakker NH, Werkhoven PJ, Passenier PO (1999) The effects of proprioceptive and visual feedbacks on geographical orientation in virtual environments. Presence 8:36–53

    Article  Google Scholar 

  51. Berthoz A (1997) Le sens du mouvement. Odile Jacob, Paris

    Google Scholar 

  52. Gentilucci M, Jeannerod M, Tadary B, Decety J (1994) Dissociating visual and kinesthetic coordinates during pointing movements. Exp Brain Res 102:359–366

    Article  Google Scholar 

  53. Gordon CF, Fletcher WA, Melvill Jones G, Block EW (1995) Adaptive plasticity in the control of locomotor trajectory. Exp Brain Res 102:540–545

    Article  Google Scholar 

  54. Ivanenko YP, Grasso R, Israel I, Berthoz A (1997) The contribution of otoliths and semicircular canals to the perception of two-dimensional passive whole-body motion in humans. J Pysiol 502(Pt 1):223–233

    Google Scholar 

  55. Ivanenko YP, Grasso R, Israel I, Berthoz A (1997) Spatial orientation in humans: perception of angular whole-body displacements in two-dimensional trajectories. Exp Brain Res 117:419–427

    Article  Google Scholar 

  56. Melvill Jones G, Berthoz A, Segal B (1984) Adaptive modification of the vestibule-ocular reflex by mental effort in darkness. Exp Brain Res 56:149–153

    Article  Google Scholar 

  57. Berthoz A (ed) (1993) Multisensory control of movement. Oxford University Press, Oxford

    Google Scholar 

  58. Collewijn H (1989) The vestibule-ocular reflex: an outdated concept? Prog Brain Res 80:209

    Google Scholar 

  59. Probst T, Straube A, Bles W (1985) Differential effects of ambivalent visual-vestibular-somatosensory stimulation on the perception self-motion. Behav Brain Res 16:71–79

    Article  Google Scholar 

  60. Israel I, Grasso R, Georges-François P, Tsuzuku T, Berthoz A (1997) Spatial memory and path integration studies by self-driven passive linear displacement. I. Basic properties. J Neurophysiol 77:3180–3192

    Google Scholar 

  61. Melvill Jones G, Galiana HL, Weber KD, Fletcher WA, Block EW (2000) Complex podokinetic (PK) response to post-rotational vestibular stimulation. Archives Italiennes de Biologies 138:99–105

    Google Scholar 

  62. Berthoz A, Israel I, Georges-François P, Grasso R, Tsuzuku T (1995) Spatial memory of body linear displacement: what is being stored? Science 269:95–98

    Article  Google Scholar 

  63. Varraine E, Bonnard M, Pailhous J (2002) The top down and bottom up mechanisms involved in sudden awareness of low level sensorimotor behavior. Brain Res Cogn Brain Res 13:357–361

    Article  Google Scholar 

  64. Luyat M, Mobarek S, Leconte C, Gentaz E (2005) The plasticity of gravitational reference frame and the subjective vertical: peripheral visual information affects the oblique effect. Neurosci Lett 385:215–219

    Article  Google Scholar 

  65. Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocol inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain 121:1749–1758

    Article  Google Scholar 

  66. Ernst MO, Bülthoff HH (2004) Merging the senses into a robust percept. Trends Cogn Sci 8:162–169

    Article  Google Scholar 

  67. Tardif E, Delacuisine B, Probst A, Clarke S (2005) Intrisic connectivity of human superior colliculus. Exp Brain Res 166:316–324

    Article  Google Scholar 

  68. Singer W (2001) Consciousness and the binding problem. Ann NY Acad Sci 929:123–146

    Article  Google Scholar 

  69. Zmigrod S, Hommel B (2010) Temporal dynamics of unimodal and multimodal feature binding. Attention Percept Physchophys 72(1):142–152

    Article  Google Scholar 

  70. King A (2005) Multisensor integration: strategies for synchronization. Curr Biol 15(9):R339–R341

    Article  Google Scholar 

  71. Oman CM (1982) A heuristic mathematical model for the dynamics of sensory conflict and motion sickness. Acta Otorhinolaryngol (Suppl 392):1–44

    Google Scholar 

  72. Zacharias GL, Young LR (1981) Influence of combined visual and vestibular cues on human perception and control of horizontal rotation. Exp Brain Res 41:159–171

    Article  Google Scholar 

  73. Borah J, Yung LR, Curry RE (1998) Optimal estimator model for human spatial orientation. Ann NY Acad Sci 545:51–73

    Article  Google Scholar 

  74. Glasauer S (1991) Interaction of semicircular canals and otoliths in the processing structure of the subjective zenith. Ann NY Acad Sci 656:849

    Google Scholar 

  75. Merfled DM, Zupan LH (2002) Neural processing of gravitoinertial cues in humans. III. Modeling tilt and translation responses. J Neurophysiol 87:819–933

    Article  Google Scholar 

  76. Gottfried JA, Dolan R (2003) The nose smells what the eye sees: crossmodal visual facilitation on human olfactory perception. Neuron 39:375–386

    Article  Google Scholar 

  77. Droulez J, Darlot C (1989) The geometric and dynamic implications of the coherence constrains in three dimensional sensorimotor coordinates. In Jeannerod M (ed) Attention and performance XIII, Laurence Erlbaum Associates, Hillsdale, N.J., pp 495–526

    Google Scholar 

  78. Cornilleau-Peres V, Droulez J (1993) Stereo-motion cooperation and the use of motion disparity in the visual perception of 3-D structure. Percept Psychophys 54:223–239

    Article  Google Scholar 

  79. Wang RF, Spelke ES (2002) Human spatial representation: insights from animals. Trends Cogn Sci 6:376–382

    Article  Google Scholar 

  80. Maguire EA, Mummery CJ, Buchel C (2000) Patterns of hippocampal-cortical interaction dissociate temporal lobe memory subsystems. Hippocampus 10:475–482

    Article  Google Scholar 

  81. Siegrest C, Etienne AS, Boulens V, Maurer R, Rowe T (2003) Homing by path integration in a new environment. Anim Behav 65:185–194

    Article  Google Scholar 

  82. McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser M-B (2006) Path integration and the neural basis of the ‘cognitive map’. Nat Rev Neurosci 7:663–678

    Article  Google Scholar 

  83. Mittelstaedt M, Mittelstaedt H (2001) Idiothetic navigation in humans: estimation of path length. Exp Brain Res 139:318–332

    Article  Google Scholar 

  84. Foo P, Duchon A, Warren WH, Tarr MJ (2007) Humans do not switch between path knowledge and landmarks when learning a new environment. Psychol Res 71:240–251

    Article  Google Scholar 

  85. Fukita N, Klatzky RL, Loomis JM, Golledge RG (1993) The encoding-error model of pathway completion without vision. Geogr Anal 22:326–225

    Google Scholar 

  86. Foo P, Duchon A, Warren WH, Tarr MJ (2005) Do humans integrate routes into a cognitive map? Map versus landmark-based navigation of novel shortcuts. J Exp Psychol Learn Mem Cogn 31:195–215

    Google Scholar 

  87. Rieke BE, van Veen HA, Bulthoff HH (2002) Visual homing is possible without landmarks: a path integration study in virtual reality. Presence-Teleoperators Virtual Environ 11:443–473

    Article  Google Scholar 

  88. Zhao M, Warren WH (2010) Are path integration and visual landmarks optimally combined in spatial navigation? Spatial Cognition, Mt. Hood, Oregon

    Google Scholar 

  89. Daniel M-P, Denis M (1998) Spatial descriptions as navigation aids: a cognitive analysis of route directions. Kognitionwissenschaft 7:45–52

    Article  Google Scholar 

  90. Uzan G et al (2008) Besoins en sécurité, localisation et orientation des déficients visuels en milieu urbain: analyse de la situation et pistes d’évolution. Proc Handicap, Paris, pp 37–42 (late blind researcher)

    Google Scholar 

  91. Magnusson CH, Hedvall P-O, Caltenco H (2018) Co-designing together with persons with visual impairments. In: Pissaloux E, Velázquez R (eds) Mobility of visually impaired people—fundamentals and ICT assistive technologies, Springer

    Google Scholar 

  92. Pissaloux E (2013) Visually impaired mobility and ICT supports. IEEE signal processing: algorithms, architectures, arrangements, and applications (SPA), ISSN: 2326-0262

    Google Scholar 

  93. Janzen G, van Turennout M (2004) Selective neural representation of objects relevant for navigation. Nat Sci 7:673–677

    Google Scholar 

  94. Steck SD, Mallot HA (2000) The role of global and local landmarks in virtual environment navigation. Presence 9:69–83

    Article  Google Scholar 

  95. Ruddle R, Peruch P (2004) Effects of proprioceptive feedback and environmental characteristics on spatial learning in virtual environments. Int J Hum Comput Stud 60:299–326

    Article  Google Scholar 

  96. Learmonth AE, Newcombe NS, Huttenlocher J (2001) Toddler’s use of metric information and landmarks to reorient. J Exp Child Psychol 80:225–244

    Google Scholar 

  97. Allen GL, Kirasic KC, Siegel AW, Herman JF (1979) Developmental issues in cognitive mapping: the selection and utilization of environmental landmarks. Child Dev 50:1062–1070

    Article  Google Scholar 

  98. Riecke BE, Cunningham D, Bulthoff HH (2006) Satial updating in virtual reality: the sufficiency of visual information. Psychol Res 71:298–313

    Article  Google Scholar 

  99. Rosenbaum RS, Ziegler M, Wincus G, Grady CL, Moscovitch M (2004) “I have often walked down this street before”: fMRI studies on the hippocampus and other structures during mental navigation of an old environment. Hippocampus 14:826–835

    Article  Google Scholar 

  100. Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL (2003) Cellular networks underlying human navigation. Nature 392:598–601

    Google Scholar 

  101. Esptein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392:598–601

    Article  Google Scholar 

  102. Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, Frith CD (2000)Navigation-related structural change in the hippocampi of taxi drivers. PNAS 97(8):4398–4403

    Google Scholar 

  103. Cheng K (1986) A purely geometric module in rat’s spatial representation. Cognition 23:148–178

    Article  Google Scholar 

  104. Hermer L, Spelke ES (1994) A geometric process of spatial reorientation in young children. Nature 370:19–20

    Article  Google Scholar 

  105. Lee SA, Sovrano VA, Spelke ES (2012) Navigation as a source of geometric knowledge: young children’s use of length, angle, distance, and direction in a reorientation task. Cognition 123(1):144–161

    Article  Google Scholar 

  106. Huttenlocher J, Vasilyeva M (2003) How toddlers represent enclosed spaces. Cogn Sci 27:749–766

    Article  Google Scholar 

  107. Lourenco SF, Huttenlocher J (2007) Using geometry to specify location: implication for spatial coding in children and nonhumans animals. Psychol Res 71:252–264

    Article  Google Scholar 

  108. Buckley MG, Smith AD, Haselgrove M (2016) Thinking outside of the box: transfer of shape-based reorientation across the boundary of an arena. Cogn Psychol 87:53–87

    Article  Google Scholar 

  109. Valiquette CM, MCNamara TP, Labrecque JS (2007) Biased representations of the spatial structure of navigable environments. Psychol Res 71:288–297

    Google Scholar 

  110. Ghaem O, Mellet E, Crivello F, Tzourio N, Mazoyer B, Berthoz A (1997) Mental navigation along memorized routes activates the hippocampus, precuneus and insula. NeuroReport 8:739–744

    Article  Google Scholar 

  111. Mellet E, Briscogne S, Tzourio-Mazoyer N, Ghaem O, Petit L, Zago L, Etard O, Berthoz A, Mazoyer B, Denis M (2000) Neural correlates of topographic mental exploration: the impact of route versus survey perspective learning. NeuroImage 12:588–600

    Article  Google Scholar 

  112. Burgess N (2008) Spatial cognition and the brain. Ann NY Acad Sci 1124:77–97

    Google Scholar 

  113. Panagiotaki P, Lambrey S, Berthoz A (2006) Neural bases and cognitive mechanism of human spatial memory. In: Vecchi T, Bottini G (eds) Imagery & spatial cognition: methods, models and cognitive assessment, John Benjamin, Amsterdam

    Google Scholar 

  114. Denis M, Loomis JM (2007) Perspectives on human spatial cognition: memory, navigation, and environmental learning. Psychol Res 71:235–239

    Article  Google Scholar 

  115. Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20(1):11–21

    Article  Google Scholar 

  116. Hartley T, Maguire EA, Spiers HJ, Burgess N (2003) The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron 37:877–888

    Article  Google Scholar 

  117. Maguire EA, Burgess N, Donnet JG, Frackowiak RS, Frith CD, O’Keefe J (1998) Knowing where and getting there: a human navigation network. Science 280:921–924

    Article  Google Scholar 

  118. Barrash J, Damasio H, Adolphs R, Tranel D (2000) The neuroanatomical correlates of route learning impairment. Neuropsychologia 38:820–836

    Article  Google Scholar 

  119. Gron G, Wunderlich AP, Spitzer M, Tomczak R, Riepe MW (2000) Brain activation during human navigation: gender-different neural networks as substrate of performance. Nat Neurosci 3:404–408

    Article  Google Scholar 

  120. Pine DS, Grun J, Maguire EA, Burgess N, Zrahn E, Koda V, Fryer A, Szeszko PR, Bilder RM (2002) Neurodevelopmental aspects of spatial navigation: a virtual reality fMRI study. NeuroImage 15:396–406

    Article  Google Scholar 

  121. Aguirre GK, Detre JA, D’Esposito M (1996) The parahippocampus subserves topographical learning in man. Cereb Cortex 6:823–829

    Article  Google Scholar 

  122. Spiers HJ, Maguire EA (2004) A ‘landmark’ study on the neural basis of navigation. Nat Neurosci 7:572–574

    Article  Google Scholar 

  123. Rosenbaum RS, Gao F, Richards B, Black SE, Moscovitch M (2005) “Where to?” remote memory for spatila relations and landmark identity in former taxi drivers with Alzheimer’s disease and encephalitis. J Cogn Neurosci 17:446–462

    Article  Google Scholar 

  124. Parslow DM, Morris RG, Fleminger S, Rahman Q, Abrahams S, Recce M (2005) Allocentric spatial memory in humans with hippocampal lesions. Acta Physiol (Oxf) 118:123–147

    Google Scholar 

  125. Maguire EA, Frackowiak RS, Frith CD (1997) Recalling routes around London: activation of the right hippocampus in taxi drivers. J Neurosci 17:7103–7110

    Google Scholar 

  126. Maguire EA, Frith CD, Cipolotti L (2001) Distinct neural systems for the encoding and recognition of topography and faces. Neuroimage 13:743–770

    Article  Google Scholar 

  127. Burgess N, Becker S, King JA, O’Keefen J (2001) Memory for events and their spatial context: models and experiments. Philos Trans Roy Soc B Lond Biol Sci 29:1493–1503

    Google Scholar 

  128. Nyffeler T, Gutbrod K, Pflugshaupt T, von Wartburg R, Hess CW, Muri RM (2005) Allocentric and egocentric spatial impairments in a case of topographical disorientation. Cortex 41:133–143

    Google Scholar 

  129. Redish AD, Touretzky DS (1997) Cognitive map beyond the hippocampus. Hippocampus 7:15–35

    Article  Google Scholar 

  130. Committeri G, Galati G, Paradis A-L, Pizzamiglio L, Berthoz A, LeBihan D (2004) Reference frames for spatial cognition: different brain areas are involved in viewer-, object- and landmark-centered judgments about object location. J Cogn Neurosci 16:1517–1535

    Article  Google Scholar 

  131. Lambrey S, Samson S, Dupont S, Baulac M, Berthoz A (2003) Reference frames and cognitive strategies during navigation: is the left hippocampal formation involved in the sequential aspects of route memory? Int Congr Ser 1250:261–274

    Article  Google Scholar 

  132. Heilman KM, Watson RT, Valenstein E (2002) Spatial neglect. In: Karnath H-O, Milner D, Vallar G (eds) The cognitive and neural bases of spatial neglect, Oxford University Press, UK, pp 3–30

    Google Scholar 

  133. Wolbers T, Weiller C, Buchel C (2004) Neural foundations of emerging route knowledge in complex spatial environments. Cogn Brain Res 21:401–411

    Google Scholar 

  134. Iaria G, Petrides M, Dagher A, Pike B, Bohbot VD (2003) Cognitive strategies dependent of the hippocampus and caudate nucleus in human navigation: variability and change with practice. J Neurosci 23:5945–5952

    Google Scholar 

  135. Leung HC, Gore JC, Goldman-Rakic PS (2005) Differential anterior prefrontal activation during the recognition stage of a spatial working memory task. Cereb Cortex 15:1742–1749

    Article  Google Scholar 

  136. Makino Y, Okosawa K, Takeda Y, Kumada T (2004) Visual search and memory search engage extensive overlapping cerebral cortices: an fMRI study. NeuroImage 23:525–533

    Google Scholar 

  137. Kesner RP, Rogers J (2004) An analysis of independence and interactions of brain substrates that subserve multiple attributes, memory systems and underlying processes. Neurobiol Learn Mem 82:199–215

    Article  Google Scholar 

  138. Iaria G, Chen JK, Guariglia C, Ptito A, Petrides M (2007) Retrospelnial and hippocampal brain regions in human navigation: complementary functional contributions to the formation and use of cognitive maps. Eur J Neurosci 25:890–899

    Article  Google Scholar 

  139. Ekstrom AD, Arnold AEGF, Iaria G (2014) A critical review of the allocentric spatial representation and its neural underpinnings: toward a network-based perspective. Front Hum Neurosci 8:803

    Article  Google Scholar 

  140. Wehner R, Boyer M, Loertscher F, Sommer S, Menzi U (2006) Ant navigation: one-way routes rather than map. Curr Biol 16:75–79

    Article  Google Scholar 

  141. Etienne AS, Maurer R, Berli J, Reverdin B, Rowe T, Georgakopoulos J, Séguinot V (1998) Navigation through vector addition. Nature 396:161–164

    Article  Google Scholar 

  142. Collet TS, Graham P (2004) Animal navigation: path integration, visual landmarks and cognitive maps. Curr Biol 14:R474–R477

    Google Scholar 

  143. Macquart D, Garnier L, Combe M, Beugnon G (2006) Ant navigation en route to the goal: signature routes facilitate way-finding of gigantiops destructor. J Comp Physiol A Neuroethology Sens Neural Behav Physiol 192:221–234

    Article  Google Scholar 

  144. Wystrach A et al (2011) Landmarks or panorama: what do navigation ants attend to for guidance? Front Zool 8(21)

    Google Scholar 

  145. Wystrach A et al (2012) What can we learn from studies of insect navigation? Anim Behav 84(1):13–20

    Google Scholar 

  146. Chittka L, Williams N, Rasmussen H, Thomson J (1999) Navigation without vision: bumblebee orientation in complete darkness. Proc Roy Acad Lond 266:45–50

    Article  Google Scholar 

  147. Srinivassan M (2015) Where paths meet and cross: navigation by path integration in the desert ant and the honeybee. J Comp Physiol A 201(6):533–546

    Article  Google Scholar 

  148. Touretzky DS, Redish AD (1996) Theory of rodent navigation based on interacting representations of space. Hippocampus 6:247–270

    Article  Google Scholar 

  149. Etienne AS, Boulens V, Maurer R, Rowe T, Siegrist C (2000) A brief view of known landmarks reorientates path integration in hamsters. Naturwissenschaften 87:494–498

    Article  Google Scholar 

  150. Etienne AS, Maurer R, Boulens V, Levy A, Rowe T (2004) Resetting the path integrator: a condition for route-based navigation. J Exp Biol 207:1491–1508

    Article  Google Scholar 

  151. Collett TS, Collett M (2006) Memory use in insect visual navigation. Nat Rev Neurosci 3:542–552

    Article  MATH  Google Scholar 

  152. Cheng K, Newcombe NS (2005) Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychon Bull Rev 12:1–23

    Article  Google Scholar 

  153. Margules J, Gallistel CR (1988) Heading in the rat: determination by environmental shape. Anim Learn Behav 16:404–410

    Article  Google Scholar 

  154. Goûteux S, Thinus-Blanc C, Vauclair J (2001) Thesus monkeys use geometric and nongeometric information during a reorientation task. J Exp Psychol Gen 130:505–529

    Article  Google Scholar 

  155. Tommasi L, Thinus-Blanc C (2004) Generalisation in place learning and geometry knowledge in rats. Learn Mem 11:153–161

    Article  Google Scholar 

  156. Mou W, Nankoo JF, Zhou R, Spetch ML (2014) Use of geometric properties of landmark arrays for reorientation relative to remote cities and local objects. J Exp Psychol Learn Mem Cogn 40(2):476–491

    Article  Google Scholar 

  157. Troffa R (2010) Visibility and wayfinding: a VR study on emergency strategies. Report series of the Transregional Collaborative Research Center SFB/TR 8 Spatial Cognition Universität Bremen, Universität Freiburg

    Google Scholar 

  158. Ben-Yehoshua D, Yaski O, Eilam D (2011) Spatial behavior: the impact of global and local geometry. Anim Cogn 14(3):341–350

    Article  Google Scholar 

  159. Cheng K (2005) Reflexions on geometry and navigation. Connection Sci 17:5–21

    Article  Google Scholar 

  160. Lew AR, Usherwood B, Fragkioudaki F, Koukoumi V, Smith SP, Austen JM, McGregor A (2014) Transfer of spatial search between environments in human adults and young children (Homo sapiens) implications for representation of local geometry by spatial systems. Dev Psychobiol 56(3):421–434

    Article  Google Scholar 

  161. Fry SN, Wehner R (2005) Look and turn: landmark-based goal navigation in honey bees. J Exp Biol 208:3945–3955

    Article  Google Scholar 

  162. Dittmar L, Egelhaaf M, Stürzl W, Boeddeker N (2011) The behavioral relevance of landmark texture for honeybee homing. Front Behav Neurosci 5:20

    Article  Google Scholar 

  163. Bishc-Knaden S, Wehner R (2003) Local vectors in desert ants: context-dependent landmark learning during outbound and homebound runs. J Comp Physiol A Neuroethology Sens Neural Behav Physiol 189:181–187

    Google Scholar 

  164. Grandchamp N, Schenk F (2006) Adaptive changes in a radial maze task: efficient selection of baited arms with reduces foraging in senescent hooded rats. Behav Brain Res 168:161–166

    Article  Google Scholar 

  165. Gray ER, Bloomfield LL, Ferrey A, Spetch ML, Sturdy CB (2005) Spatial encoding in mountain chickadees: feature overshadow geometry. Biol Lett 1:314–317

    Article  Google Scholar 

  166. Pearce JM, Ward-Robinson J, Good M, Fussell C, Aydin A (2001) Influence of a beacon on spatial learning based on the shape of the test environment. J Exp Psychol Anim Behav Processes 27:329–344

    Google Scholar 

  167. Hayward A, McGregor A, Good MA, Pearce JM (2003) Absence of overshadowing and blocking between landmarks and the geometric cues provided by the shape of a test arena. Q J Exp Psychol B 56:114–126

    Article  Google Scholar 

  168. Wall PL, Botly LC, Black CK, Shettleworth SJ (2004) The geometric module in the rat: independence of shape and feature learning in a food finding task. Learn Behav 32:289–298

    Google Scholar 

  169. McGregor A, Good MA, Pearce JM (2004) Absence of an interaction between navigational strategies based on local and distal landmarks. J Exp Psychol Anim Behav Process 30:34–44

    Google Scholar 

  170. Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55(4):189–208

    Article  Google Scholar 

  171. Golledge RG, Stimpson RJ (1997) Spatial behavior: a geographic perspective. The Guilford Press, New York

    Google Scholar 

  172. Roche RA, Mangaoang MA, Commis S, O’Mara SM (2005) Hippocampal contributions to neurocognitive mapping in humans: a new model. Hippocampus 15:622–641

    Article  Google Scholar 

  173. Andersen R, Snyder H, Bradley D, Xing J (1997) Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu Rev Neurosci 20:303–330

    Google Scholar 

  174. Hubbard EM, Ramachandran VS (2005) Neurocognitive mechanisms of synesthesia. Neuron 48:509–520

    Article  Google Scholar 

  175. Denis M, Borst G (2006) Variations on the image scanning paradigm: what do they contribute to our knowledge of mental imagery? In: Vecchi T, Bottini G (eds) Imagery & spatial cognition: methods, models and cognitive assessment, John Benjamin, Amsterdam

    Google Scholar 

  176. Golledge RG (1999) Human wayfinding and cognitive maps. In: Golledge RG (ed) Wayfinding behavior, Johns Hopkins University Press, Baltimore, pp 5–45

    Google Scholar 

  177. Koenderink JJ (2002) Pappus in optical space. Percept Psychophys 64(3):380–391

    Article  Google Scholar 

  178. Couclelis H, Golledge RG, Gale N, Tobler W (1987) Exploring the anchor-point hypothesis of spatial cognition. J Environ Psychol 5:99–122

    Article  Google Scholar 

  179. O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–175

    Article  Google Scholar 

  180. O’Keefe J, Burgess N (1996) Geometric determinants of place fields of hippocampal neurons. Nature 381:425–428

    Article  Google Scholar 

  181. Save E, Cressant A, Thinus-Blanc C, Poucet B (1998) Saptial firing of hippocampal place cells in blind rats. J Neurosci 18(5):1818–1826

    Google Scholar 

  182. O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Oxford University Press, UK

    Google Scholar 

  183. Etienne AS, Joris-Lambert S, Dahn-Hurni C, Reverdin B (1995) Optimizing visual landmarks: two and three-dimensional minimal landscapes. Anim Behav 49:165–179

    Article  Google Scholar 

  184. Stackman RW, Taube JS (2002) Firing properties of head direction cells in the rat anterior thalamic nucleus: dependence on vestibular input. J Neurosci 17:4349–4358

    Google Scholar 

  185. Kessels R, de Haan E, Kappelle L, Postma A (2001) Varieties of human spatial memory: a meta-analysis on the effects of hippocampal lesions. Brain Res Rev 35:295–303

    Article  Google Scholar 

  186. Golledge RG, Smith TR, Pellegrino JW, Doherty SE, Marshall SP (1985) A conceptual model and empirical analysis of children’s acquisition of spatial knowledge. J Environ Psychol 5:125–152

    Article  Google Scholar 

  187. Shemyakin FN (1962) General problems of orientation is space and space representations. In: Anan’yev et al (eds) Psychological science in the USSR, Office of Technical Services, Washington, pp 184–225

    Google Scholar 

  188. Hart RA, Moore GT (1973) The development of spatial cognition. In: Downs RM, Stea D (eds) Image and environment, Adline Publishing, Chicago, pp 246–288

    Google Scholar 

  189. Siegel AW, White SH (1975) The development of spatial representations of large-scale environments. Adv Child Dev Behav 10:9–55

    Article  Google Scholar 

  190. Kuipers BJ, Levitt TS (1988) Navigation and mapping in large-scale space. AI Mag 9:25–46

    Google Scholar 

  191. Montello DR (1998) A new framework for understanding the acquisition of spatial knowledge in large-scale environments. In: Egenhofer MJ, Glledge RG (eds) Spatial and temporal reasoning in geographic information systems, Oxford University Press, UK, pp 143–154

    Google Scholar 

  192. Jacobs LF, Schenk F (2003) Unpacking in cognitive map: the parallel map theory of hippocampal function. Psychol Rev 110:285–315

    Article  Google Scholar 

  193. Mou W, McNamara TP, Valiquette CM, Rump B (2004) Allocentric and egocentric updating of spatial memory. J Exp Psychol Learn Mem Cogn 30:142–157

    Google Scholar 

  194. Mou W, Fan Y, McNamara TP, Owen CB (2008) Intrisinc frames of reference and egocentric viewpoints in scene recognition. Cognition 106:750–769

    Article  Google Scholar 

  195. Finaly CA, Motes MA, Kozhevnikov M (2007) Updating representations of learned scenes. Psychol Res 71:265–276

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwige Pissaloux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Pissaloux, E., Velázquez, R. (2018). On Spatial Cognition and Mobility Strategies. In: Pissaloux, E., Velazquez, R. (eds) Mobility of Visually Impaired People. Springer, Cham. https://doi.org/10.1007/978-3-319-54446-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54446-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54444-1

  • Online ISBN: 978-3-319-54446-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics