Skip to main content

Discriminative Subtree Selection for NBI Endoscopic Image Labeling

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Abstract

In this paper, we propose a novel method for image labeling of colorectal Narrow Band Imaging (NBI) endoscopic images based on a tree of shapes. Labeling results could be obtained by simply classifying histogram features of all nodes in a tree of shapes, however, satisfactory results are difficult to obtain because histogram features of small nodes are not enough discriminative. To obtain discriminative subtrees, we propose a method that optimally selects discriminative subtrees. We model an objective function that includes the parameters of a classifier and a threshold to select subtrees. Then labeling is done by mapping the classification results of nodes of the subtrees to those corresponding image regions. Experimental results on a dataset of 63 NBI endoscopic images show that the proposed method performs qualitatively and quantitatively much better than existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cancer Research, U.K.: Bowel cancer statistics (2015). http://www.cancerresearchuk.org/cancer-info/cancerstats/types/bowel/. Accessed 7 Aug 2016

  2. Meining, A., Rösch, T., Kiesslich, R., Muders, M., Sax, F., Heldwein, W.: Inter- and intra-observer variability of magnification chromoendoscopy for detecting specialized intestinal metaplasia at the gastroesophageal junction. Endoscopy 36, 160–164 (2004)

    Article  Google Scholar 

  3. Mayinger, B., Oezturk, Y., Stolte, M., Faller, G., Benninger, J., Schwab, D., Maiss, J., Hahn, E.G., Muehldorfer, S.: Evaluation of sensitivity and inter- and intra-observer variability in the detection of intestinal metaplasia and dysplasia in barrett’s esophagus with enhanced magnification endoscopy. Scand. J. Gastroenterol. 41, 349–356 (2006)

    Article  Google Scholar 

  4. Oba, S., Tanaka, S., Oka, S., Kanao, H., Yoshida, S., Shimamoto, F., Chayama, K.: Characterization of colorectal tumors using narrow-band imaging magnification: combined diagnosis with both pit pattern and microvessel features. Scand. J. Gastroenterol. 45, 1084–1092 (2010)

    Article  Google Scholar 

  5. Takemura, Y., Yoshida, S., Tanaka, S., Kawase, R., Onji, K., Oka, S., Tamaki, T., Raytchev, B., Kaneda, K., Yoshihara, M., Chayama, K.: Computer-aided system for predicting the histology of colorectal tumors by using narrow-band imaging magnifying colonoscopy (with video). Gastrointest. Endosc. 75, 179–185 (2012)

    Article  Google Scholar 

  6. Tamaki, T., Yoshimuta, J., Kawakami, M., Raytchev, B., Kaneda, K., Yoshida, S., Takemura, Y., Onji, K., Miyaki, R., Tanaka, S.: Computer-aided colorectal tumor classification in NBI endoscopy using local features. Med. Image Anal. 17, 78–100 (2013)

    Article  Google Scholar 

  7. Kanao, H., Tanaka, S., Oka, S., Hirata, M., Yoshida, S., Chayama, K.: Narrow-band imaging magnification predicts the histology and invasion depth of colorectal tumors. Gastrointest. Endosc. 69, 631–636 (2009)

    Article  Google Scholar 

  8. Kominami, Y., Yoshida, S., Tanaka, S., Sanomura, Y., Hirakawa, T., Raytchev, B., Tamaki, T., Koide, T., Kaneda, K., Chayama, K.: Computer-aided diagnosis of colorectal polyp histology by using a real-time image recognition system and narrow-band imaging magnifying colonoscopy. Gastrointest. Endosc. 83, 643–649 (2016)

    Article  Google Scholar 

  9. Hirakawa, T., Tamaki, T., Raytchev, B., Kaneda, K., Koide, T., Kominami, Y., Yoshida, S., Tanaka, S.: SVM-MRF segmentation of colorectal NBI endoscopic images. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4739–4742 (2014)

    Google Scholar 

  10. Xia, G.S., Delon, J., Gousseau, Y.: Shape-based invariant texture indexing. Int. J. Comput. Vis. 88, 382–403 (2010)

    Article  MathSciNet  Google Scholar 

  11. Monasse, P., Guichard, F.: Fast computation of a contrast-invariant image representation. IEEE Trans. Image Process. 9, 860–872 (2000)

    Article  Google Scholar 

  12. Gross, S., Kennel, M., Stehle, T., Wulff, J., Tischendorf, J., Trautwein, C., Aach, T.: Polyp segmentation in NBI colonoscopy. In: Meinzer, H.P., Deserno, T.M., Handels, H., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2009, pp. 252–256. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Ganz, M., Yang, X., Slabaugh, G.: Automatic segmentation of polyps in colonoscopic narrow-band imaging data. IEEE Trans. Biomed. Eng. 59, 2144–2151 (2012)

    Article  Google Scholar 

  14. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 898–916 (2011)

    Article  Google Scholar 

  15. Collins, T., Bartoli, A., Bourdel, N., Canis, M.: Segmenting the uterus in monocular laparoscopic images without manual input. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 181–189. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24574-4_22

    Chapter  Google Scholar 

  16. Bernal, J., Sánchez, J., Vilariño, F.: A region segmentation method for colonoscopy images using a model of polyp appearance. In: Vitrià, J., Sanches, J.M., Hernández, M. (eds.) IbPRIA 2011. LNCS, vol. 6669, pp. 134–142. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21257-4_17

    Chapter  Google Scholar 

  17. Hegadi, R.S., Goudannavar, B.A.: Interactive segmentation of medical images using grabcut. Int. J. Mach. Intell. 3, 168–171 (2011)

    Article  Google Scholar 

  18. Breier, M., Gross, S., Behrens, A., Stehle, T., Aach, T.: Active contours for localizing polyps in colonoscopic NBI image data (2011)

    Google Scholar 

  19. Figueiredo, I.N., Figueiredo, P.N., Stadler, G., Ghattas, O., Araujo, A.: Variational image segmentation for endoscopic human colonic aberrant crypt foci. IEEE Trans. Med. Imaging 29, 998–1011 (2010)

    Article  Google Scholar 

  20. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)

    Article  MATH  Google Scholar 

  21. Nosrati, M.S., Amir-Khalili, A., Peyrat, J.M., Abinahed, J., Al-Alao, O., Al-Ansari, A., Abugharbieh, R., Hamarneh, G.: Endoscopic scene labelling and augmentation using intraoperative pulsatile motion and colour appearance cues with preoperative anatomical priors. Int. J. Comput. Assist. Radiol. Surg. 11, 1409–1418 (2016)

    Article  Google Scholar 

  22. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1915–1929 (2013)

    Article  Google Scholar 

  23. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015)

    Google Scholar 

  24. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  25. Liu, F., Lin, G., Shen, C.: CRF learning with CNN features for image segmentation. Pattern Recogn. 48, 2983–2992 (2015). Discriminative Feature Learning from Big Data for Visual Recognition

    Article  Google Scholar 

  26. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1520–1528 (2015)

    Google Scholar 

  27. Jones, R.: Connected filtering and segmentation using component trees. Comput. Vis. Image Underst. 75, 215–228 (1999)

    Article  Google Scholar 

  28. Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Trans. Image Process. 15, 3531–3539 (2006)

    Article  Google Scholar 

  29. Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval. IEEE Trans. Image Process. 9, 561–576 (2000)

    Article  Google Scholar 

  30. Cousty, J., Najman, L.: Incremental algorithm for hierarchical minimum spanning forests and saliency of watershed cuts. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 272–283. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21569-8_24

    Chapter  Google Scholar 

  31. Xu, Y., Géraud, T., Najman, L.: Two applications of shape-based morphology: blood vessels segmentation and a generalization of constrained connectivity. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 390–401. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38294-9_33

    Chapter  Google Scholar 

  32. Dufour, A., Tankyevych, O., Naegel, B., Talbot, H., Ronse, C., Baruthio, J., Dokládal, P., Passat, N.: Filtering and segmentation of 3D angiographic data: advances based on mathematical morphology. Med. Image Anal. 17, 147–164 (2013)

    Article  Google Scholar 

  33. Perret, B., Collet, C.: Connected image processing with multivariate attributes: an unsupervised Markovian classification approach. Comput. Vis. Image Underst. 133, 1–14 (2015)

    Article  Google Scholar 

  34. Liu, G., Xia, G.S., Yang, W., Zhang, L.: Texture analysis with shape co-occurrence patterns. In: Pattern Recognition (ICPR), pp. 1627–1632 (2014)

    Google Scholar 

  35. He, C., Zhuo, T., Su, X., Tu, F., Chen, D.: Local topographic shape patterns for texture description. IEEE Sig. Process. Lett. 22, 871–875 (2015)

    Article  Google Scholar 

  36. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

    MATH  Google Scholar 

  37. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by JSPS KAKENHI grants numbers JP14J00223 and JP26280015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsubasa Hirakawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hirakawa, T. et al. (2017). Discriminative Subtree Selection for NBI Endoscopic Image Labeling. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10117. Springer, Cham. https://doi.org/10.1007/978-3-319-54427-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54427-4_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54426-7

  • Online ISBN: 978-3-319-54427-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics