Skip to main content

Level Set Segmentation of Brain Matter Using a Trans-Roto-Scale Invariant High Dimensional Feature

  • Conference paper
  • First Online:
  • 2066 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10117))

Abstract

Brain matter extraction from MR images is an essential, but tedious process performed manually by skillful medical professionals. Automation can be a potential solution to this complicated task. However, it is an ambitious task due to the irregular boundaries between the grey and white matter regions. The intensity inhomogeneity in the MR images further adds to the complexity of the problem. In this paper, we propose a high dimensional translation, rotation, and scale-invariant feature, further used by a variational framework to perform the desired segmentation. The proposed model is able to accurately segment out the brain matter. The above argument is supported by extensive experimentation and comparison with the state-of-the-art methods performed on several MRI scans taken from the McGill Brain Web.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based bias field correction of MR images of the brain. IEEE Trans. Med. Imaging 18, 885–896 (1999)

    Article  Google Scholar 

  2. Wang, L., Chen, Y., Pan, X., Hong, X., Xia, D.: Level set segmentation of brain magnetic resonance images based on local Gaussian distribution fitting energy. IEEE Trans. Med. Imaging 188, 316–325 (2010)

    Google Scholar 

  3. Vovk, U., Pernus, F., Likar, B.: A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans. Med. Imaging 26, 405–421 (2007)

    Article  Google Scholar 

  4. Angoth, V., Dwith, C., Singh, A.: A novel wavelet based image fusion for brain tumor detection. IEEE Trans. Med. Imaging 2, 1–7 (2013)

    Google Scholar 

  5. Dwith, C., Angoth, V., Singh, A.: Wavelet based image fusion for detection of brain tumor. IEEE Trans. Med. Imaging 5, 25 (2013)

    Article  Google Scholar 

  6. Yi, Z., Criminisi, A., Shotton, J., Blake, A.: Discriminative, semantic segmentation of brain tissue in MR images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 558–565. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04271-3_68

    Chapter  Google Scholar 

  7. Marroquín, J.L., Vemuri, B.C., Botello, S., Calderón, F., Fernandez-Bouzas, A.: An accurate and efficient Bayesian method for automatic segmentation of brain MRI. IEEE Trans. Med. Imaging 21, 934–945 (2002)

    Article  MATH  Google Scholar 

  8. Shattuck, D.W., Sandor-Leahy, S.R., Schaper, K.A., Rottenberg, D.A., Leahy, R.M.: Magnetic resonance image tissue classification using a partial volume model. IEEE Trans. Med. Imaging 13, 856–876 (2001)

    Google Scholar 

  9. Greenspan, H., Ruf, A., Goldberger, J.: Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Trans. Med. Imaging 25, 1233–1245 (2006)

    Article  Google Scholar 

  10. Peng, Z., Wee, W., Lee, J.H.: Automatic segmentation of MR brain images using spatial-varying Gaussian mixture and Markov random field approach. In: Conference on Computer Vision and Pattern Recognition Workshop, CVPRW 2006, pp. 80–80. IEEE (2006)

    Google Scholar 

  11. Zeng, X., Staib, L.H., Schultz, R.T., Duncan, J.S.: Volumetric layer segmentation using coupled surfaces propagation. In: Proceedings of 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 708–715. IEEE (1998)

    Google Scholar 

  12. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57 (2001)

    Article  Google Scholar 

  13. Ashburner, J., Friston, K.: Multimodal image coregistration and partitioning–a unified framework. Neuroimage 6, 209–217 (1997)

    Article  Google Scholar 

  14. Magnin, B., Mesrob, L., Kinkingnéhun, S., Pélégrini-Issac, M., Colliot, O., Sarazin, M., Dubois, B., Lehéricy, S., Benali, H.: Support vector machine-based classification of Alzheimers disease from whole-brain anatomical MRI. Neuroradiology 51, 73–83 (2009)

    Article  Google Scholar 

  15. Khayati, R., Vafadust, M., Towhidkhah, F., Nabavi, M.: Fully automatic segmentation of multiple sclerosis lesions in brain MR flair images using adaptive mixtures method and Markov random field model. IEEE Trans. Med. Imaging 38, 379–390 (2008)

    Google Scholar 

  16. Shen, S., Sandham, W., Granat, M., Sterr, A.: MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Trans. Med. Imaging 9, 459–467 (2005)

    Google Scholar 

  17. Cobzas, D., Birkbeck, N., Schmidt, M., Jagersand, M., Murtha, A.: 3D variational brain tumor segmentation using a high dimensional feature set. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  18. Singh, A., Karanam, S., Bajpai, S., Choubey, A., Raviteja, T.: Malignant brain tumor detection. Int. J. Comput. Theor. Eng. 4, 1002–1006 (2011)

    Google Scholar 

  19. Cui, W., Wang, Y., Lei, T., Fan, Y., Feng, Y.: Level set segmentation of medical images based on local region statistics and maximum a posteriori probability. Comput. Math. Methods Med. 2013, 1–12 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. He, C., Wang, Y., Chen, Q.: Active contours driven by weighted region-scalable fitting energy based on local entropy. IEEE Trans. Med. Imaging 92, 587–600 (2012)

    Google Scholar 

  21. Li, C., Kao, C.Y., Gore, J.C., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Med. Imaging 17, 1940–1949 (2008)

    MathSciNet  Google Scholar 

  22. Wang, L., He, L., Mishra, A., Li, C.: Active contours driven by local Gaussian distribution fitting energy. IEEE Trans. Med. Imaging 89, 2435–2447 (2009)

    MATH  Google Scholar 

  23. Wang, Y., Xiang, S., Pan, C., Wang, L., Meng, G.: Level set evolution with locally linear classification for image segmentation. IEEE Trans. Med. Imaging 46, 1734–1746 (2013)

    MATH  Google Scholar 

  24. Hahn, J., Lee, C.O.: Geometric attraction-driven flow for image segmentation and boundary detection. IEEE Trans. Med. Imaging 21, 56–66 (2010)

    Google Scholar 

  25. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. IEEE Trans. Med. Imaging 50, 271–293 (2002)

    MATH  Google Scholar 

  26. Albert, H., Rafeef, A., Roger, T., Anthony, T.: Automatic MRI brain tissue segmentation using a hybrid statistical and geometric model. In: 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, pp. 394–397 (2006)

    Google Scholar 

  27. Karteek, P., Dana, C., Martin, J., Sirish L., S., Albert, M.: 3D variational brain tumor segmentation on a clustered feature set. In: Medical Imaging (2009)

    Google Scholar 

  28. Li, C., Huang, R., Ding, Z., Gatenby, J., Metaxas, D.N., Gore, J.C.: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans. Med. Imaging 20, 2007–2016 (2011)

    MathSciNet  Google Scholar 

  29. Zacharaki, E.I., Wang, S., Chawla, S., Soo Yoo, D., Wolf, R., Melhem, E.R., Davatzikos, C.: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. IEEE Trans. Med. Imaging 62, 1609–1618 (2009)

    Google Scholar 

  30. Pitiot, A., Delingette, H., Thompson, P.M., Ayache, N.: Expert knowledge-guided segmentation system for brain MRI. IEEE Trans. Med. Imaging 23, S85–S96 (2004)

    Article  Google Scholar 

  31. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). doi:10.1007/BFb0056195

    Chapter  Google Scholar 

  32. Mehrotra, R., Namuduri, K.R., Ranganathan, N.: Gabor filter-based edge detection. IEEE Trans. Med. Imaging 25, 1479–1494 (1992)

    Google Scholar 

  33. Geusebroek, J.M., Smeulders, A.W., Van de Weijer, J.: Fast anisotropic gauss filtering. IEEE Trans. Med. Imaging 12, 938–943 (2003)

    MathSciNet  MATH  Google Scholar 

  34. Aylward, S.R., Bullitt, E.: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans. Med. Imaging 21, 61–75 (2002)

    Article  Google Scholar 

  35. Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. IEEE Trans. Med. Imaging 30, 117–156 (1998)

    Google Scholar 

  36. Damon, J.: Properties of ridges and cores for two-dimensional images. IEEE Trans. Med. Imaging 10, 163–174 (1999)

    MathSciNet  MATH  Google Scholar 

  37. Lindeberg, T.: Feature detection with automatic scale selection. IEEE Trans. Med. Imaging 30, 79–116 (1998)

    Google Scholar 

  38. Sato, Y., Nakajima, S., Atsumi, H., Koller, T., Gerig, G., Yoshida, S., Kikinis, R.: 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. In: Troccaz, J., Grimson, E., Mösges, R. (eds.) CVRMed/MRCAS -1997. LNCS, vol. 1205, pp. 213–222. Springer, Heidelberg (1997). doi:10.1007/BFb0029240

    Chapter  Google Scholar 

  39. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Article  Google Scholar 

  40. Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. IEEE Trans. Med. Imaging 43, 29–44 (2001)

    MATH  Google Scholar 

  41. Schmid, C.: Constructing models for content-based image retrieval. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 2, pp. II-39. IEEE (2001)

    Google Scholar 

  42. Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Med. Imaging 19, 3243–3254 (2010)

    MathSciNet  Google Scholar 

  43. Web, B.: Simulated brain database. McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill (2004). http://www.bic.mni.mcgill.ca/brainweb/

  44. Chan, T.F., Vese, L., et al.: Active contours without edges. IEEE Trans. Med. Imaging 10, 266–277 (2001)

    MATH  Google Scholar 

  45. Wells, W.M., Grimson, W.E.L., Kikinis, R., Jolesz, F.A.: Adaptive segmentation of MRI data. IEEE Trans. Med. Imaging 15, 429–442 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amarjot Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Madiraju, N., Singh, A., Omkar, S.N. (2017). Level Set Segmentation of Brain Matter Using a Trans-Roto-Scale Invariant High Dimensional Feature. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10117. Springer, Cham. https://doi.org/10.1007/978-3-319-54427-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54427-4_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54426-7

  • Online ISBN: 978-3-319-54427-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics