Skip to main content

Multiple Facial Attributes Estimation Based on Weighted Heterogeneous Learning

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10117))

Included in the following conference series:

Abstract

To estimate multiple face attributes, independent classifier for each attribute are trained such as facial point detection, gender recognition, and age estimation in the conventional approach. It is inefficient because the computational cost of training and testing increases with the number of tasks. To address this problem, heterogeneous learning is able to train a single classifier to perform multiple tasks. Heterogeneous learning is simultaneously train regression and recognition tasks, thereby reducing both training and testing time. However, it is difficult to obtain equivalent performance for set of single task classifiers due to variance of training error of each task. In this paper, we propose weighted heterogeneous learning of a convolutional neural network with a weighted error function. Our method outperformed the conventional method in terms of facial attribute recognition, especially for regression tasks such as facial point detection, age estimation, and smile ratio estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998). doi:10.1007/BFb0054760

    Chapter  Google Scholar 

  2. Dantone, M., Gall, J., Fanelli, G., Gool, L.V.: Real-time facial feature detection using conditional regression forests. In: Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  3. Lian, H.-C., Lu, B.-L.: Multi-view gender classification using local binary patterns and support vector machines. In: Wang, J., Yi, Z., Zurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3972, pp. 202–209. Springer, Heidelberg (2006). doi:10.1007/11760023_30

    Chapter  Google Scholar 

  4. Guo, G., Fu, Y., Dyer, C.R., Huang, T.S.: Image-based human age estimation by manifold learning and locally adjusted robust regression. IEEE Trans. Image Process. 17, 1178–1188 (2008)

    Article  MathSciNet  Google Scholar 

  5. Krizhevsky, A., Ilva, S., Hinton, G.E.: ImageNet classification with deep convolutional neural network. In: Advances in Neural Information Processing System, vol. 25, pp. 1097–1105 (2012)

    Google Scholar 

  6. Sun, Y., Wang, X., Tang, X.: Deep convolutional network cascade for facial point detection. In: Computer Vision and Pattern Recognition (2013)

    Google Scholar 

  7. Zhou, E., Fan, H., Cao, Z., Jiang, Y., Yin, Q.: Extensive facial landmark localization with coarse-to-fine convolutional network cascade. In: IEEE International Conference on Computer Vision Workshops (2013)

    Google Scholar 

  8. Yamashita, T., Watasue, T., Yamauchi, Y., Fujiyoshi, H.: Facial point detection using convolutional neural network transferred from a heterogeneous task. In: International Conference on Image Processing (2015)

    Google Scholar 

  9. Kimura, M., Yamashita, T., Yamauchi, Y., Fujiyoshi, H.: Facial point detection based on a convolutional neural network with optimal mini-batch procedure. In: IEEE International Conference on Image Processing (2015)

    Google Scholar 

  10. Wu, Y., Ji, Q.: Discriminative deep face shape model for facial point detection. Int. J. Comput. Vis. 113, 37–53 (2015)

    Article  MathSciNet  Google Scholar 

  11. Jourabloo, A., Liu, X.: Large-pose face alignment via CNN-based dense 3D model fitting. In: Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  12. Yan, C., Lang, C., Wang, T., Du, X., Zhang, C.: Age estimation based on convolutional neural network. In: Ooi, W.T., Snoek, C.G.M., Tan, H.K., Ho, C.-K., Huet, B., Ngo, C.-W. (eds.) PCM 2014. LNCS, vol. 8879, pp. 211–220. Springer, Heidelberg (2014). doi:10.1007/978-3-319-13168-9_22

    Google Scholar 

  13. Eidinger, E., Enbar, R., Hassner, T.: Age and gender estimation of unfiltered faces. In: IEEE Press Transactions on Information Forensics and Security (2014)

    Google Scholar 

  14. Zhu, Y., Yan, L., Guowang, M., Guodong, G.: A study on apparent age estimation. In: IEEE International Conference on Computer Vision Workshops (2015)

    Google Scholar 

  15. Kuang, Z., Huang, C., Zhang, W.: Deeply learned rich coding for cross-dataset facial age estimation. In: IEEE International Conference on Computer Vision Workshops, pp. 96–101 (2015)

    Google Scholar 

  16. Tivive, F.H.C., Bouzerdoum, A.: A gender recognition system using shunting inhibitory convolutional neural networks. In: Neural Networks, pp. 5336–5341 (2006)

    Google Scholar 

  17. Antipov, G., Berrani, S.A., Dugelay, J.-L.: Minimalistic CNN-based ensemble model for gender prediction from face images. Pattern Recogn. Lett. 70, 59–65 (2015)

    Article  Google Scholar 

  18. Levi, G., Hassner, T.: Age and gender classification using convolutional neural networks. In: Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  19. Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Mach. Learn. 73(3), 243–272 (2008). Kluwer Academic Publishers

    Article  Google Scholar 

  20. Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Facial landmark detection by deep multi-task learning. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 94–108. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10599-4_7

    Google Scholar 

  21. Devries, T., Biswaranjan, K., Taylor, G.W.: Multi-task learning of facial landmarks and expression. In: Computer and Robot Vision (2014)

    Google Scholar 

  22. Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Learning deep representation for face alignment with auxiliary attributes. arXiv preprint arXiv:1408.3967 (2015)

  23. Yim, J., Jung, H., Yoo, B., Choi, C., Park, D., Kim, J.: Rotating your face using multi-task deep neural network. In: Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  24. Ranjan, R., Vishal, M.P., Chellappa, R.: HyperFace: a deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. arXiv preprint arXiv:1603.01249 (2016)

  25. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. In: Neurocomputing, pp. 696–699 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayoshi Yamashita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Fukui, H. et al. (2017). Multiple Facial Attributes Estimation Based on Weighted Heterogeneous Learning. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10117. Springer, Cham. https://doi.org/10.1007/978-3-319-54427-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54427-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54426-7

  • Online ISBN: 978-3-319-54427-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics