Skip to main content

Patch Group Based Bayesian Learning for Blind Image Denoising

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10116))

Included in the following conference series:

Abstract

Most existing image denoising methods assume to know the noise distributions, e.g., Gaussian noise, impulse noise, etc. However, in practice the noise distribution is usually unknown and is more complex, making image denoising still a challenging problem. In this paper, we propose a novel blind image denoising method under the Bayesian learning framework, which automatically performs noise inference and reconstructs the latent clean image. By utilizing the patch group (PG) based image nonlocal self-similarity prior, we model the PG variations as Mixture of Gaussians, whose parameters, including the number of components, are automatically inferred by variational Bayesian method. We then employ nonparametric Bayesian dictionary learning to extract the latent clean structures from the PG variations. The dictionaries and coefficients are automatically inferred by Gibbs sampling. The proposed method is evaluated on images with Gaussian noise, images with mixed Gaussian and impulse noise, and real noisy photographed images, in comparison with state-of-the-art denoising methods. Experimental results show that our proposed method performs consistently well on all types of noisy images in terms of both quantitative measure and visual quality, while those competing methods can only work well on the specific type of noisy images they are designed for and perform poorly on other types of noisy images. The proposed method provides a good solution to blind image denoising.

L. Zhang—This work is supported by the HK RGC GRF grant (PolyU5313/12E).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D: Nonlinear Phenomena 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: CVPR, pp. 60–65 (2005)

    Google Scholar 

  3. Roth, S., Black, M.J.: Fields of experts. Int. J. Comput. Vis. 82, 205–229 (2009)

    Article  Google Scholar 

  4. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15, 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  5. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  6. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: ICCV, pp. 2272–2279 (2009)

    Google Scholar 

  7. Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. In: ICCV, pp. 479–486 (2011)

    Google Scholar 

  8. Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: can plain neural networks compete with bm3d. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2392–2399. IEEE (2012)

    Google Scholar 

  9. Cai, J.F., Chan, R.H., Nikolova, M.: Fast two-phase image deblurring under impulse noise. J. Math. Imaging Vis. 36, 46–53 (2010)

    Article  MathSciNet  Google Scholar 

  10. Xiao, Y., Zeng, T., Yu, J., Ng, M.K.: Restoration of images corrupted by mixed gaussian-impulse noise via 11–10 minimization. Pattern Recogn. 44, 1708–1720 (2011)

    Article  MATH  Google Scholar 

  11. Jiang, J., Zhang, L., Yang, J.: Mixed noise removal by weighted encoding with sparse nonlocal regularization. IEEE Trans. Image Process. 23, 2651–2662 (2014)

    Article  MathSciNet  Google Scholar 

  12. Portilla, J., Strela, V., Wainwright, M., Simoncelli, E.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12, 1338–1351 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Portilla, J.: Full blind denoising through noise covariance estimation using gaussian scale mixtures in the wavelet domain. In: 2004 International Conference on Image Processing, ICIP 2004, vol. 2, pp. 1217–1220 (2004)

    Google Scholar 

  14. Huber, P.J.: Robust Statistics. Springer (2011)

    Google Scholar 

  15. Rabie, T.: Robust estimation approach for blind denoising. IEEE Trans. Image Process. 14, 1755–1765 (2005)

    Article  Google Scholar 

  16. Liu, C., Szeliski, R., Kang, S.B., Zitnick, C.L., Freeman, W.T.: Automatic estimation and removal of noise from a single image. IEEE Trans. Pattern Anal. Mach. Intell. 30, 299–314 (2008)

    Article  Google Scholar 

  17. Gong, Z., Shen, Z., Toh, K.C.: Image restoration with mixed or unknown noises. Multiscale Model. Simul. 12, 458–487 (2014)

    Article  MATH  Google Scholar 

  18. Lebrun, M., Colom, M., Morel, J.M.: Multiscale image blind denoising. IEEE Trans. Image Process. 24, 3149–3161 (2015)

    Article  MathSciNet  Google Scholar 

  19. Lebrun, M., Buades, A., Morel, J.M.: A nonlocal bayesian image denoising algorithm. SIAM J. Imaging Sci. 6, 1665–1688 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hjort, N.L.: Nonparametric bayes estimators based on beta processes in models for life history data. Ann. Stat. 18, 1259–1294 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Thibaux, R., Jordan, M.I.: Hierarchical beta processes and the Indian buffet process. In: International Conference on Artificial Intelligence and Statistics, pp. 564–571 (2007)

    Google Scholar 

  22. Paisley, J., Carin, L.: Nonparametric factor analysis with beta process priors. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 777–784. ACM (2009)

    Google Scholar 

  23. Yu, G., Sapiro, G., Mallat, S.: Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity. IEEE Trans. Image Process. 21, 2481–2499 (2012)

    Article  MathSciNet  Google Scholar 

  24. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  25. Dong, W., Zhang, L., Shi, G., Li, X.: Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process. 22, 1620–1630 (2013)

    Article  MathSciNet  Google Scholar 

  26. Xu, J., Zhang, L., Zuo, W., Zhang, D., Feng, X.: Patch group based nonlocal self-similarity prior learning for image denoising. In: The IEEE International Conference on Computer Vision (ICCV), pp. 244–252 (2015)

    Google Scholar 

  27. Zhou, M., Chen, H., Ren, L., Sapiro, G., Carin, L., Paisley, J.W.: Non-parametric bayesian dictionary learning for sparse image representations. In: NIPS, pp. 2295–2303 (2009)

    Google Scholar 

  28. Ferguson, T.S.: A bayesian analysis of some nonparametric problems. Ann. Stat. 1, 209–230 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ren, L., Du, L., Carin, L., Dunson, D.: Logistic stick-breaking process. J. Mach. Learn. Res. 12, 203–239 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: CVPR, pp. 2862–2869 (2014)

    Google Scholar 

  31. Zhou, M., Chen, H., Paisley, J., Ren, L., Li, L., Xing, Z., Dunson, D., Sapiro, G., Carin, L.: Nonparametric bayesian dictionary learning for analysis of noisy and incomplete images. IEEE Trans. Image Process. 21, 130–144 (2012)

    Article  MathSciNet  Google Scholar 

  32. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  33. ABSoft, N.: Neat image. https://ni.neatvideo.com/home

  34. Liu, X., Tanaka, M., Okutomi, M.: Single-image noise level estimation for blind denoising. IEEE Trans. Image Process. 22, 5226–5237 (2013)

    Article  Google Scholar 

  35. Hwang, H., Haddad, R.: Adaptive median filters: new algorithms and results. IEEE Trans. Image Process. 4, 499–502 (1995)

    Article  Google Scholar 

  36. Lebrun, M., Colom, M., Morel, J.M.: The noise clinic: a blind image denoising algorithm. http://www.ipol.im/pub/art/2015/125/. Accessed 28 Jan 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Xu, J., Ren, D., Zhang, L., Zhang, D. (2017). Patch Group Based Bayesian Learning for Blind Image Denoising. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10116. Springer, Cham. https://doi.org/10.1007/978-3-319-54407-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54407-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54406-9

  • Online ISBN: 978-3-319-54407-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics