Real-Time Head Pose Estimation on Mobile Devices

  • Zhengxin ChengEmail author
  • Fangyu Bai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10116)


There are a lot of actual application scenarios of head pose estimation, such as live detection, human interaction, gesture-based equipment, VR devices. This paper proposes a method based on linear regression to get the pose angle. The method utilizes supervised gradient descent method to get the facial feature points, and estimates the head pose by least square regression. In regression modeling, we only use seven feature point positions, which decrease the model size and the computing load. A data normalization technique is employed to eliminate the effect of the camera imaging parameters on pose estimation. Moreover, the training data set is derived from a group of 3D face models according to the camera imaging model, which can provide precise pose parameters. Experiments validate the proposed method, and show it can be run in real time. The algorithm can be easily transplanted to the mobile terminals. We have released our source code at


Feature Point Mobile Terminal Face Model Relevance Vector Machine World Coordinate System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by the National Natural Science Foundation of China under Grant No. 61572078, and Beijing Municipal Natural Science Foundation under Grant No. 4152028.


  1. 1.
    Zhu, X., Lei, Z., Yan, J., Yi, D., Li, S.Z.: High-fidelity pose and expression normalization for face recognition in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 787–796 (2015)Google Scholar
  2. 2.
    Kim, J.B., Kim, H.I., Park, R.H.: Head pose estimation using a coplanar face model for human computer interaction. In: 2014 IEEE International Conference on Consumer Electronics (ICCE), pp. 560–561. IEEE (2014)Google Scholar
  3. 3.
    Valenti, R., Sebe, N., Gevers, T.: Combining head pose and eye location information for gaze estimation. IEEE Trans. Image Process. 21, 802–815 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Kim, H., Lee, S.H., Sohn, M.K., Kim, D.J.: Illumination invariant head pose estimation using random forests classifier and binary pattern run length matrix. Hum. Centric Comput. Inf. Sci. 4, 1–12 (2014)CrossRefGoogle Scholar
  5. 5.
    de Farias Macedo, M.C., Apolinário, A.L., dos Santos Souza, A.C.: A robust real-time face tracking using head pose estimation for a markerless ar system. In: 2013 XV Symposium on Virtual and Augmented Reality (SVR), pp. 224–227. IEEE (2013)Google Scholar
  6. 6.
    Kaymak, S., Patras, I.: Exploiting depth and intensity information for head pose estimation with random forests and tensor models. In: Park, J.-I., Kim, J. (eds.) ACCV 2012. LNCS, vol. 7729, pp. 160–170. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-37484-5_14 CrossRefGoogle Scholar
  7. 7.
    Sherrah, J., Gong, S., Ong, E.J.: Face distributions in similarity space under varying head pose. Image Vis. Comput. 19, 807–819 (2001)CrossRefGoogle Scholar
  8. 8.
    Fanelli, G., Weise, T., Gall, J., Gool, L.: Real time head pose estimation from consumer depth cameras. In: Mester, R., Felsberg, M. (eds.) DAGM 2011. LNCS, vol. 6835, pp. 101–110. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23123-0_11 CrossRefGoogle Scholar
  9. 9.
    Li, Y., Gong, S., Sherrah, J., Liddell, H.: Support vector machine based multi-view face detection and recognition. Image Vis. Comput. 22, 413–427 (2004)CrossRefGoogle Scholar
  10. 10.
    Alioua, N., Amine, A., Rogozan, A., Bensrhair, A., Rziza, M.: Driver head pose estimation using efficient descriptor fusion. EURASIP J. Image Video Process. 2016, 1–14 (2016)CrossRefGoogle Scholar
  11. 11.
    Raytchev, B., Yoda, I., Sakaue, K.: Head pose estimation by nonlinear manifold learning. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 4, pp. 462–466. IEEE (2004)Google Scholar
  12. 12.
    Hu, N., Huang, W., Ranganath, S.: Head pose estimation by non-linear embedding and mapping. In: IEEE International Conference on Image Processing 2005, vol. 2, pp. II–342. IEEE (2005)Google Scholar
  13. 13.
    Wu, J., Trivedi, M.M.: A two-stage head pose estimation framework and evaluation. Pattern Recogn. 41, 1138–1158 (2008)CrossRefzbMATHGoogle Scholar
  14. 14.
    Ma, Y., Konishi, Y., Kinoshita, K., Lao, S., Kawade, M.: Sparse bayesian regression for head pose estimation. In: 18th International Conference on Pattern Recognition (ICPR 2006), vol. 3, pp. 507–510. IEEE (2006)Google Scholar
  15. 15.
    Wang, J.G., Sung, E.: Em enhancement of 3d head pose estimated by point at infinity. Image Vis. Comput. 25, 1864–1874 (2007)CrossRefGoogle Scholar
  16. 16.
    Duan, F., Wu, F., Hu, Z.: Pose determination and plane measurement using a trapezium. Pattern Recogn. Lett. 29, 223–231 (2008)CrossRefGoogle Scholar
  17. 17.
    Hartley, R.I.: In defense of the eight-point algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 19, 580–593 (1997)CrossRefGoogle Scholar
  18. 18.
    Freund, Y., Schapire, R.E.: A desicion-theoretic generalization of on-line learning and an application to boosting. In: Vitányi, P. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995). doi: 10.1007/3-540-59119-2_166 CrossRefGoogle Scholar
  19. 19.
    Xiong, X., Torre, F.D.L.: Supervised descent method and its applications to face alignment, vol. 9, pp. 532–539 (2013)Google Scholar
  20. 20.
    Hu, Y., Duan, F., Yin, B., Zhou, M., Sun, Y., Wu, Z., Geng, G.: A hierarchical dense deformable model for 3d face reconstruction from skull. Multimedia Tools Appl. 64, 345–364 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.College of Information Science and TechnologyBeijing Normal UniversityBeijingPeople’s Republic of China

Personalised recommendations