Advertisement

Suppression of Alpha Oscillation During Micro-expression Recognition

  • Ming Zhang
  • Yu-Hsin Chen
  • Xiaolan FuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10116)

Abstract

Behavioral evidence shows that the recognition of micro-expression is impaired by emotional context, especially negative context. However, the neural oscillatory features of such emotional context effect on recognition of micro-expression remain unclear. The present study used time-frequency analysis to explore the event-related spectral perturbation (ERSP) characteristics reflected in the processing of micro-expression followed emotional contexts. In the occipital-central region, we found that emotional context modulated micro-expression spectral power in alpha band and a strong suppression of alpha oscillation was observed in negative context. This study provided spectral dynamic evidence in support of the effect of emotional context during micro-expression recognition.

Keywords

Emotional context Micro-expression Alpha oscillation ERSP Time-frequency analysis 

Notes

Acknowledgments

We thank Dr. Kai Wang for the early suggestions on data analysis of the study. This research was supported by grants from the National Natural Science Foundation of China (61375009).

References

  1. 1.
    Ekman, P., Friesen, W.V.: Nonverbal leakage and clues to deception. Psychiatry 32, 88–106 (1969)CrossRefGoogle Scholar
  2. 2.
    Ekman, P.: Lie catching and micro expressions. In: The Philosophy of Deception, pp. 118–133 (2009)Google Scholar
  3. 3.
    Zhang, M., Fu, Q.F., Chen, Y.C., Fu, X.L.: Emotional context influences micro-expression recognition. PloS One 9, e95018 (2014)CrossRefGoogle Scholar
  4. 4.
    Werheid, K., et al.: Priming emotional facial expressions as evidenced by event-related brain potentials. Int. J. Psychophysiol. 55, 209–219 (2005)CrossRefGoogle Scholar
  5. 5.
    Hietanen, J.K., Astikainen, P.: N170 response to facial expressions is modulated by the affective congruency between the emotional expression and preceding affective picture. Biol. Psychol. 92, 114–124 (2013)CrossRefGoogle Scholar
  6. 6.
    Bernat, E., Bunce, S., Shevrin, H.: Event-related brain potentials differentiate positive and negative mood adjectives during both supraliminal and subliminal visual processing. Int. J. Psychophysiol. 42, 11–34 (2001)CrossRefGoogle Scholar
  7. 7.
    Cuthbert, B.N., et al.: Brain potentials in affective picture processing: covariation with autonomic arousal and affective report. Biol. Psychol. 52, 95–111 (2000)CrossRefGoogle Scholar
  8. 8.
    Dolcos, F., Cabeza, R.: Event-related potentials of emotional memory: encoding pleasant, unpleasant, and neutral pictures. Cogn. Affect. Behav. Neurosci. 2, 252–263 (2002)CrossRefGoogle Scholar
  9. 9.
    Carretié, L., et al.: Automatic attention to emotional stimuli: neural correlates. Hum. Brain Mapp. 22, 290–299 (2004)CrossRefGoogle Scholar
  10. 10.
    Franchini, M.: Emotional face processing: an ERP study on visual selective attention of emotional faces presented subliminally and supraliminally. University of Geneva (2011)Google Scholar
  11. 11.
    Righart, R., de Gelder, B.: Context influences early perceptual analysis of faces–an electrophysiological study. Cereb. Cortex 16, 1249–1257 (2006)CrossRefGoogle Scholar
  12. 12.
    Righart, R., de Gelder, B.: Rapid influence of emotional scenes on encoding of facial expressions: an ERP study. Soc. Cogn. Affect. Neurosci. 3, 270–278 (2008)CrossRefGoogle Scholar
  13. 13.
    Morel, S., et al.: Very early modulation of brain responses to neutral faces by a single prior association with an emotional context: evidence from MEG. Neuroimage 61, 1461–1470 (2012)CrossRefGoogle Scholar
  14. 14.
    Ma, J., Liu, C., Chen, X.: Emotional conflict processing induce boosted theta oscillation. Neurosci. Lett. 595, 69–73 (2015)CrossRefGoogle Scholar
  15. 15.
    Wang, K., et al.: Temporal and spectral profiles of stimulus-stimulus and stimulus-response conflict processing. Neuroimage 89, 280–288 (2014)CrossRefGoogle Scholar
  16. 16.
    Aftanas, L., et al.: Event-related synchronization and desynchronization during affective processing: emergence of valence-related time-dependent hemispheric asymmetries in theta and upper alpha band. Int. J. Neurosci. 110, 197–219 (2001)CrossRefGoogle Scholar
  17. 17.
    Davidson, R.J.: Anterior cerebral asymmetry and the nature of emotion. Brain Cogn. 20, 125–151 (1992)CrossRefGoogle Scholar
  18. 18.
    Davidson, R.J.: Cerebral asymmetry and emotion: conceptual and methodological conundrums. Cogn. Emot. 7, 115–138 (1993)CrossRefGoogle Scholar
  19. 19.
    Gotlib, I.H.: EEG alpha asymmetry, depression, and cognitive functioning. Cogn. Emot. 12, 449–478 (1998)CrossRefGoogle Scholar
  20. 20.
    Güntekin, B., Basar, E.: Emotional face expressions are differentiated with brain oscillations. Int. J. Psychophysiol. 64, 91–100 (2007)CrossRefGoogle Scholar
  21. 21.
    Jaušovec, N., Jaušovec, K., Gerlič, I.: Differences in event-related and induced EEG patterns in the theta and alpha frequency bands related to human emotional intelligence. Neurosci. Lett. 311, 93–96 (2001)CrossRefGoogle Scholar
  22. 22.
    Jensen, O., et al.: Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cereb. Cortex 12, 877–882 (2002)CrossRefGoogle Scholar
  23. 23.
    Baddeley, A.: Working memory: theories, models, and controversies. Annu. Rev. Psychol. 63, 1–29 (2012)CrossRefGoogle Scholar
  24. 24.
    Ekman, P.: METT. Micro expression training tool. CD-ROM. Oakland (2003)Google Scholar
  25. 25.
    Ratcliff, N.J., et al.: The scorn of status: a bias toward perceiving anger on high-status faces. Social Cogn. 30, 631–642 (2012)CrossRefGoogle Scholar
  26. 26.
    Tottenham, N., et al.: The NimStim set of facial expressions: judgments from untrained research participants. Psychiat. Res. 168, 242–249 (2009)CrossRefGoogle Scholar
  27. 27.
    Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Meth. 134, 9–21 (2004)CrossRefGoogle Scholar
  28. 28.
    Klimesch, W.: EEG-alpha rhythms and memory processes. Int. J. Psychophysiol. 26, 319–340 (1997)CrossRefGoogle Scholar
  29. 29.
    Ito, T.A.: Reflections on social neuroscience. Social Cogn. 28, 686–694 (2010)CrossRefGoogle Scholar
  30. 30.
    Vuilleumier, P., et al.: Effects of attention and emotion on face processing in the human brain: an event-related fMRI study. Neuron 30, 829–841 (2001)CrossRefGoogle Scholar
  31. 31.
    Alpers, G.W.: Eye-catching: right hemisphere attentional bias for emotional pictures. Laterality 13, 158–178 (2008)Google Scholar
  32. 32.
    Wilson, J.P., Hugenberg, K.: Shared signal effects occur more strongly for salient outgroups than ingroups. Social Cogn. 31, 636–648 (2013)CrossRefGoogle Scholar
  33. 33.
    Adolphs, R., Russell, J.A., Tranel, D.: A role for the human amygdala in recognizing emotional arousal from unpleasant stimuli. Psychol. Sci. 10, 167–171 (1999)CrossRefGoogle Scholar
  34. 34.
    Hugenberg, K., Sczesny, S.: On wonderful women and seeing smiles: social categorization moderates the happy face response latency advantage. Social Cogn. 24, 516–539 (2006)CrossRefGoogle Scholar
  35. 35.
    Jessen, S., Kotz, S.A.: The temporal dynamics of processing emotions from vocal, facial, and bodily expressions. Neuroimage 58, 665–674 (2011)CrossRefGoogle Scholar
  36. 36.
    Hess, U., Adams, R.B., Kleck, R.E.: The categorical perception of emotions and traits. Social Cogn. 27, 320–326 (2009)CrossRefGoogle Scholar
  37. 37.
    Phelps, E.A., LeDoux, J.E.: Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48, 175–187 (2005)CrossRefGoogle Scholar
  38. 38.
    Klimesch, W., Schack, B., Sauseng, P.: The functional significance of theta and upper alpha oscillations. Exp. Psychol. 52, 99–108 (2005)CrossRefGoogle Scholar
  39. 39.
    Meaux, E., et al.: Event-related potential and eye tracking evidence of the developmental dynamics of face processing. Eur. J. Neurosci. 39, 1349–1362 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Brain and Cognitive ScienceInstitute of Psychology, Chinese Academy of SciencesBeijingChina
  2. 2.Department of PsychologyDalian Medical UniversityDalianChina
  3. 3.Institute of Psychology and Behavior SciencesWenzhou UniversityWenzhouChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations