Skip to main content

Hyperspectral Image Classification via a Joint Weighted K-Nearest Neighbour Approach

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10116))

Included in the following conference series:

  • 1820 Accesses

Abstract

In this paper, we propose a simple yet effective classification framework to conduct hyperspectral image (HSI) classification based on K-nearest neighbour (KNN) and joint model. First, we extend the traditional KNN method to deal with the HSI classification problem by introducing its domain knowledge in HSI data. To be specific, we develop a joint KNN approach to solve the HSI classification problem by considering the distances between all neighbouring pixels of a given test pixel and training samples. Second, we exploit a set-to-point distance between neighbouring pixels and each training sample, and introduce this distance into the joint KNN framework. In addition, a weighted KNN method is adopted to achieve stable performance based on our empirical observations. Both qualitative and quantitative results illustrate that our method achieves better performance than other classic and popular methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The overall accuracy is defined as the ratio of correctly classified samples to all test samples, the average accuracy is calculated by simply averaging the accuracies for each class, and the \(\kappa \) coefficient is computed based on the confusion matrix of different classes.

References

  1. Landgrebe, D.A., Serpico, S.B., Crawford, M.M., Singhroy, V.: Introduction to the special issue on analysis of hyperspectral image data. IEEE Trans. Geosci. Remote Sens. 39, 1343–1345 (2001)

    Article  Google Scholar 

  2. Gualtieri, J.A., Chettri, S.R., Cromp, R.F., Johnson, L.F.: Support vector machine classifiers as applied to aviris data. In: Airborne Geoscience Workshop (1999)

    Google Scholar 

  3. Melgani, F., Serpico, S.B.: A statistical approach to the fusion of spectral and spatio-temporal contextual information for the classification of remote-sensing images. Pattern Recogn. Lett. 23, 1053–1061 (2002)

    Article  MATH  Google Scholar 

  4. Bruzzone, L., Cossu, R.: A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps. IEEE Trans. Geosci. Remote Sens. 40, 1984–1996 (2002)

    Article  MATH  Google Scholar 

  5. Palmason, J.A., Benediktsson, J.A., Sveinsson, J.R., Chanussot, J.: Classification of hyperspectral data from urban areas using morphological preprocessing and independent component analysis. In: IGARSS, pp. 176–179 (2005)

    Google Scholar 

  6. Ham, J., Chen, Y., Crawford, M.M., Ghosh, J.: Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 43, 492–501 (2005)

    Article  Google Scholar 

  7. Bruzzone, L., Chi, M., Marconcini, M.: A novel transductive svm for semisupervised classification of remote-sensing images. IEEE Trans. Geosci. Remote Sens. 44, 3363–3373 (2006)

    Article  Google Scholar 

  8. Gao, L., Li, J., Khodadadzadeh, M., Plaza, A., Zhang, B., He, Z., Yan, H.: Subspace-based support vector machines for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 12, 349–353 (2014)

    Google Scholar 

  9. Pesaresi, M., Benediktsson, J.A.: A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Trans. Geosci. Remote Sens. 39, 309–320 (2001)

    Article  Google Scholar 

  10. Benediktsson, J.A., Pesaresi, M., Amason, K.: Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Trans. Geosci. Remote Sens. 41, 1940–1949 (2003)

    Article  Google Scholar 

  11. Benediktsson, J.A., Palmason, J.A., Sveinsson, J.R.: Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 43, 480–491 (2005)

    Article  Google Scholar 

  12. Marpu, P.R., Pedergnana, M., Mura, M.D., Benediktsson, J.A., Bruzzone, L.: Automatic generation of standard deviation attribute profiles for spectral-spatial classification of remote sensing data. IEEE Geosci. Remote Sens. Lett. 10, 293–297 (2013)

    Article  Google Scholar 

  13. Camps-Valls, G., Gomez-Chova, L., Muñoz-Marí, J., Vila-Francés, J., Calpe-Maravilla, J.: Composite kernels for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 3, 93–97 (2006)

    Article  Google Scholar 

  14. Mura, M.D., Benediktsson, J.A., Waske, B., Bruzzone, L.: Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans. Geosci. Remote Sens. 48, 3747–3762 (2010)

    Article  Google Scholar 

  15. Krishnapuram, B., Carin, L., Figueiredo, M.A.T., Hartemink, A.J.: Sparse multinomial logistic regression: fast algorithms and generalization bounds. IEEE Trans. Pattern Anal. Mach. Intell. 27, 957–968 (2005)

    Article  Google Scholar 

  16. Moser, G., Serpico, S.B.: Combining support vector machines and markov random fields in an integrated framework for contextual image classification. IEEE Trans. Geosci. Remote Sens. 51, 2734–2752 (2013)

    Article  Google Scholar 

  17. Srinivas, U., Chen, Y., Monga, V., Nasrabadi, N.M., Tran, T.D.: Exploiting sparsity in hyperspectral image classification via graphical models. IEEE Geosci. Remote Sens. Lett. 10, 505–509 (2013)

    Article  Google Scholar 

  18. Liu, J., Wu, Z., Sun, L., Wei, Z., Xiao, L.: Hyperspectral image classification using kernel sparse representation and semilocal spatial graph regularization. IEEE Geosci. Remote Sens. Lett. 11, 1320–1324 (2014)

    Article  Google Scholar 

  19. Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral image classification via kernel sparse representation. IEEE Trans. Geosci. Remote Sens. 51, 217–231 (2013)

    Article  Google Scholar 

  20. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31, 210–227 (2009)

    Article  Google Scholar 

  21. Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 49, 3973–3985 (2011)

    Article  Google Scholar 

  22. Chen, Y., Nasrabadi, N.M., Tran, T.D.: Sparse representation for target detection in hyperspectral imagery. IEEE J. Sel. Topics Sig. Process. 5, 629–640 (2011)

    Article  Google Scholar 

  23. Qian, Y., Ye, M., Zhou, J.: Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features. IEEE Trans. Geosci. Remote Sens. 51, 2276–2291 (2013)

    Article  Google Scholar 

  24. Sun, X., Qu, Q., Nasrabadi, N.M., Tran, T.D.: Structured priors for sparse-representation-based hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 11, 1235–1239 (2014)

    Article  Google Scholar 

  25. Li, J., Zhang, H., Huang, Y., Zhang, L.: Hyperspectral image classification by nonlocal joint collaborative representation with a locally adaptive dictionary. IEEE Trans. Geosci. Remote Sens. 52, 3707–3719 (2014)

    Article  Google Scholar 

  26. Li, S., Qi, H.: Sparse representation based band selection for hyperspectral images. In: ICIP, pp. 2693–2696 (2011)

    Google Scholar 

  27. Yang, S., Jin, H., Wang, M., Ren, Y., Jiao, L.: Data-driven compressive sampling and learning sparse coding for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 11, 479–483 (2014)

    Article  Google Scholar 

  28. Wang, Z., Nasrabadi, N.M., Huang, T.S.: Discriminative and compact dictionary design for hyperspectral image classification using learning vq framework. In: ICASSP, pp. 3427–3431 (2013)

    Google Scholar 

  29. Soltani-Farani, A.A., Rabiee, H.R., Hosseini, S.A.: Spatial-aware dictionary learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 53, 527–541 (2015)

    Article  Google Scholar 

  30. Dudani, S.A.: The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst. Man Cybern. 6, 325–327 (1976)

    Article  Google Scholar 

  31. Fauvel, Y.T.M., Chanussot, J., Benediktsson, J.A.: Svm-and mrf-based method for accurate classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 7, 736–740 (2010)

    Article  Google Scholar 

  32. Zou, J., Li, W., Du, Q.: Sparse representation-based nearest neighbor classifiers for hyperspectral imagery. IEEE Geosci. Remote Sens. Lett. 12, 2418–2422 (2015)

    Article  Google Scholar 

  33. The indian pines data set. http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes

  34. Dudani, S.A.: The distance-weighted k-nearest neighbor rule. IEEE Trans. Syst. Man Cybern. 6, 325–327 (1976)

    Article  Google Scholar 

  35. Plaza, A., et al.: Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 113, S110–S122 (2009)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Natural Science Foundation of China under Grant No. 61502070, and in part by Fundamental Research Funds for Central Universities under Grant No. DUT16RC(4)16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bo, C., Wang, D., Lu, H. (2017). Hyperspectral Image Classification via a Joint Weighted K-Nearest Neighbour Approach. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10116. Springer, Cham. https://doi.org/10.1007/978-3-319-54407-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54407-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54406-9

  • Online ISBN: 978-3-319-54407-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics