Skip to main content

A Combinatorial Approach for Hyperspectral Image Segmentation

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10116))

Included in the following conference series:

  • 1768 Accesses

Abstract

A common strategy in high spatial resolution image analysis is to define coarser geometric space elements, i.e. superpixels, by grouping near pixels based on (a, b)–connected graphs as neighborhood definitions. Such an approach, however, cannot meet some topological axioms needed to ensure a correct representation of connectedness relationships. Superpixel boundaries may present ambiguities because one-dimensional contours are represented by pixels, which are two-dimensional. Additionally, the high spatial resolution available today has increased the volume of data that must be processed during image segmentation even after data reduction phases such as principal component analysis. The inherent complexity of segmentation algorithms, including texture analysis, along with the aforementioned volume of data, demands considerable computing resources. In this paper, we propose a novel way for segmenting hyperspectral imagery data by defining a computational framework based on Axiomatic Locally Finite Spaces (ALFS) provided by Cartesian complexes, which provide a geometric space that complies with the \(T_{0}\) digital topology. Our approach links also oriented matroids to geometric space representations and is implemented on a parallel computational framework. We evaluated quantitatively our approach on a subset of hyperspectral remote sensing scenes. Our results show that, by departing from the conventional pixel representation, it is possible to segment an image based on a topologically correct digital space, while simultaneously taking advantage of combinatorial features of their associated oriented matroids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grady, L.: Targeted image segmentation using graph methods (2012)

    Google Scholar 

  2. Lizarazo, I., Elsner, P.: Fuzzy segmentation for object-based image classification. Int. J. Remote Sens. 30, 1643–1649 (2009)

    Article  Google Scholar 

  3. Brun, L., Domenger, J.P., Mokhtari, M.: Incremental modifications of segmented image defined by discrete maps. J. Vis. Commun. Image Represent. 14, 251–290 (2003)

    Article  Google Scholar 

  4. Kovalevsky, V.A.: Geometry of locally finite spaces. Int. J. Shape Model. 14, 231–232 (2008)

    Article  Google Scholar 

  5. Kovalevsky, V.A.: Finite topology as applied to image analysis. Comput. Vis. Graph. Image Process. 46(2), 141–161 (1989). doi:10.1016/0734-189X(89)90165-5

    Article  Google Scholar 

  6. Kovalevsky, V.A.: Discrete topology and contour definition. Pattern Recogn. Lett. 2, 281–288 (1984)

    Article  Google Scholar 

  7. Kovalevsky, V.: Algorithms and data structures for computer topology. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 38–58. Springer, Heidelberg (2001). doi:10.1007/3-540-45576-0_3

    Chapter  Google Scholar 

  8. Kovalevsky, V.: Algorithms in digital geometry based on cellular topology. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 366–393. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30503-3_27

    Chapter  Google Scholar 

  9. Kovalevsky, V.: Axiomatic digital topology. J. Math. Imaging Vis. 26, 41–58 (2006)

    Article  MathSciNet  Google Scholar 

  10. Listing, J.B.: Der Census räumlicher Complexe: oder Verallgemeinerung des euler’schen Satzes von den Polyädern. Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen 10, 97–182 (1862)

    Google Scholar 

  11. Whitney, H.: On the abstract properties of linear dependence. Am. J. Math. 57, 509–533 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  12. Oxley, J.G.: Matroid Theory. Oxford Graduate Texts in Mathematics. Oxford University Press, Inc., New York (2006)

    MATH  Google Scholar 

  13. Fukuda, K.: Lecture notes on oriented matroids and geometric computation. Technical report RO-2004.0621, course of Doctoral school in Discrete System Optimization, EPFL 2004 (2004)

    Google Scholar 

  14. De Loera, J.A., Rambau, J., Santos, F.: Triangulations: Structures for Algorithms and Applications, 1st edn. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  15. Leung, T., Malik, J.: Detecting, localizing and grouping repeated scene elements from an image. In: Buxton, B., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 546–555. Springer, Heidelberg (1996). doi:10.1007/BFb0015565

    Chapter  Google Scholar 

  16. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 898–916 (2011)

    Article  Google Scholar 

  17. GDAL Development Team: GDAL - Geospatial Data Abstraction Library, Version 2.1.0. Open Source Geospatial Foundation (2016)

    Google Scholar 

  18. Szeliski, R.: Computer Vision: Algorithms and Applications, 1st edn. Springer, New York (2010)

    MATH  Google Scholar 

  19. Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13, 583–598 (1991)

    Article  Google Scholar 

  20. Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26, 530–549 (2004)

    Article  Google Scholar 

  21. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2008 (VOC2008) Results (2008). http://www.pascal-network.org/challenges/VOC/voc2008/workshop/index.html

Download references

Acknowledgement

Centro de Computo de Alto Desempeño of Universidad Distrital (CECAD) provided the computing environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Antonio Valero Medina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Valero Medina, J.A., Arbeláez Escalante, P.A., Lizarazo Salcedo, I.A. (2017). A Combinatorial Approach for Hyperspectral Image Segmentation. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10116. Springer, Cham. https://doi.org/10.1007/978-3-319-54407-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54407-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54406-9

  • Online ISBN: 978-3-319-54407-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics