Skip to main content

Spectral Dichromatic Parameter Recovery from Two Views via Total Variation Hyper-priors

  • Conference paper
  • First Online:
  • 1760 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10116))

Abstract

In this paper, we propose an approach for the recovery of the dichromatic model from two hyperspectral or multispectral images, i.e., the joint estimation of illuminant, reflectance, and shading of each pixel, as well as the optical flow between the two views. The approach is based on the minimization of an energy functional linking the dichromatic model to the image appearances and the flow between the images to the factorized reflectance component. In order to minimize the resulting under-constrained problem, we apply vectorial total variation regularizers both to the scene reflectance, and to the flow hyper-parameters. We do this by enforcing the physical priors for the reflectance of the materials in the scene and assuming the flow varies smoothly within rigid objects in the image. We show the effectiveness of the approach compared with single view model recovery both in terms of model constancy and of closeness to the ground truth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Albarelli, A., Rodolà, E., Torsello, A.: Imposing semi-local geometric constraints for accurate correspondences selection in structure from motion: a game-theoretic perspective. IJCV 97(1), 36–53 (2012)

    Article  Google Scholar 

  2. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)

    Article  Google Scholar 

  3. Brainard, D.H., Delahunt, P.B., Freeman, W.T., Kraft, J.M., Xiao, B.: Bayesian model of human color constancy. J. Vis. 6(11), 1267–1281 (2006)

    Article  Google Scholar 

  4. Brelstaff, G., Blake, A.: Detecting specular reflection using Lambertian constraints. In: International Conference on Computer Vision, pp. 297–302 (1988)

    Google Scholar 

  5. Bresson, X., Chan, T.F.: Fast dual minimization of the vectorial total variation norm and applications to color image processing (2008)

    Google Scholar 

  6. Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. IEEE TPAMI 33(3), 500–513 (2011)

    Article  Google Scholar 

  7. Drulea, M., Nedevschi, S.: Total variation regularization of local-global optical flow. In: 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 318–323, October 2011

    Google Scholar 

  8. Finlayson, G.D., Schaefer, G.: Convex and non-convex illuminant constraints for dichromatic colour constancy. In: IEEE CVPR, vol. 1, pp. 598–604 (2001)

    Google Scholar 

  9. Finlayson, G.D., Schaefer, G.: Solving for colour constancy using a constrained dichromatic reflection model. IJCV 42(3), 127–144 (2001)

    Article  MATH  Google Scholar 

  10. Forsyth, A.: Calculus of Variations. Dover Books on Advanced Mathematics. Dover Publications, New York (1960)

    MATH  Google Scholar 

  11. Foster, D.H., Amano, K., Nascimento, S.M.C., Foster, M.J.: Frequency of metamerism in natural scenes. J. Opt. Soc. Am. A 23(10), 2359–2372 (2006)

    Article  Google Scholar 

  12. Huynh, C.P., Robles-Kelly, A.: A solution of the dichromatic model for multispectral photometric invariance. IJCV 90(1), 1–27 (2010)

    Article  Google Scholar 

  13. Huynh, C.P., Robles-Kelly, A., Hancock, E.R.: Shape and refractive index recovery from single-view polarisation images. In: IEEE CVPR (2010)

    Google Scholar 

  14. Klinker, G., Shafer, S., Kanade, T.: A physical approach to color image understanding. Int. J. Comput. Vis. 4(1), 7–38 (1990)

    Article  Google Scholar 

  15. Kong, N., Tai, Y., Shin, J.S.: A physically-based approach to reflection separation: from physical modeling to constrained optimization. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 209–221 (2014)

    Article  Google Scholar 

  16. Land, E.H., Mccann, J.J.: Lightness and retinex theory. J. Opt. Soc. Am. 61, 1–11 (1971)

    Article  Google Scholar 

  17. Leordeanu, M., Zanfir, A., Sminchisescu, C.: Locally affine sparse-to-dense matching for motion and occlusion estimation. In: IEEE ICCV, December 2013

    Google Scholar 

  18. Lin, S., Shum, H.: Separation of diffuse and specular reflection in color images. In: International Conference on Computer Vision and Pattern Recognition (2001)

    Google Scholar 

  19. Marr, D., Poggio, T.: A computational theory of human stereo vision. Proc. R. Soc. Lond. Ser. B Biol. Sci. 204, 301–328 (1979)

    Google Scholar 

  20. Nagel, H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 8, 565–593 (1986)

    Article  Google Scholar 

  21. Narasimhan, S.G., Nayar, S.K.: Contrast restoration of weather degraded images. IEEE TPAMI 25, 713–724 (2003)

    Article  Google Scholar 

  22. Nayar, S., Bolle, R.: Reflectance based object recognition. Int. J. Comput. Vis. 17(3), 219–240 (1996)

    Article  Google Scholar 

  23. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the Mumford-Shah functional. In: ICCV, pp. 1133–1140. IEEE (2009)

    Google Scholar 

  24. Robles-Kelly, A., Huynh, C.P.: Imaging Spectroscopy for Scene Analysis. Springer, London (2013)

    Book  Google Scholar 

  25. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shafer, S.A.: Using color to separate reflection components. Color Res. Appl. 10(4), 210–218 (1985)

    Article  Google Scholar 

  27. Stiles, W.S., Burch, J.M.: Interim report to the Commission Internationale de l’Éclairage Zurich, 1955, on the National Physical Laboratory’s investigation of colour-matching. Optica Acta 2, 168–181 (1955)

    Article  Google Scholar 

  28. Tan, R.T., Nishino, K., Ikeuchi, K.: Separating reflection components based on chromaticity and noise analysis. IEEE TPAMI 26(10), 1373–1379 (2004)

    Article  Google Scholar 

  29. Terzopoulos, D.: Multilevel computational processes for visual surface reconstruction. Comput. Vis. Graph. Image Underst. 24, 52–96 (1983)

    Article  Google Scholar 

  30. Tominanga, S., Wandell, B.A.: Standard surface-reflectance model and illuminant estimation. J. Opt. Soc. Am. A 6, 576–584 (1989)

    Article  Google Scholar 

  31. Werlberger, M., Pock, T., Bischof, H.: Motion estimation with non-local total variation regularization. In: CVPR, pp. 2464–2471. IEEE (2010)

    Google Scholar 

  32. Zickler, T., Mallick, S.P., Kriegman, D.J., Belhumeur, P.N.: Color subspaces as photometric invariants. IJCVs 79(1), 13–30 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Robles-Kelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bergamasco, F., Torsello, A., Robles-Kelly, A. (2017). Spectral Dichromatic Parameter Recovery from Two Views via Total Variation Hyper-priors. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10116. Springer, Cham. https://doi.org/10.1007/978-3-319-54407-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54407-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54406-9

  • Online ISBN: 978-3-319-54407-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics