Skip to main content

Video Super Resolution Using Non-Local Means with Adaptive Decaying Factor and Searching Window

  • Conference paper
  • First Online:
  • 1800 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10116))

Abstract

Power consumption, transmission bandwidth, and spatial-temporal resolution tradeoff are among the most important factors that affect video processing on mobile devices. Scalable video coding (SVC) provides a possible solution to overcome these problems. Every video in SVC format consists of high-resolution (HR) frames and low-resolution (LR) frames. For a better viewing experience, super resolution (SR) is introduced to refine the LR frames. Non-local means (NLM) based SR has a promising prospect. Since NLM originates from image denoising, the fixed parameters of NLM is not fit for SR tasks. A fixed decaying factor tends to blur the details in flat regions and a fixed searching window results in mismatches among pixels. Thus, we propose two adaptive parameters to address these problems. We generalize key features that affect SR methods’ applicability of implementation on hardware and show NLM is fit for hardware implementation. The experimental results validate the proposed algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Healy, D., Mitchell, O.R.: Digital video bandwidth compression using block truncation coding. IEEE Trans. Commun. 29, 1809–1817 (1982)

    Article  Google Scholar 

  2. Banerjee, S.: Low-power content-based video acquisition for super-resolution enhancement. IEEE Trans. Multimedia 11, 455–464 (2009)

    Article  Google Scholar 

  3. Shen, M., Xue, P.: Low-power video acquisition with super-resolution reconstruction for mobile devices. IEEE Trans. Consum. Electron. 56, 2520–2528 (2010)

    Article  Google Scholar 

  4. Ben-Ezra, M., Nayar, S.K.: Motion deblurring using hybrid imaging. In: Proceedings of the CVPR, pp. 657–664 (2003)

    Google Scholar 

  5. Tai, Y., Du, H., Brown, M., Lin, S.: Image/video deblurring using a hybrid camera. In: Proceedings of the CVPR, pp. 1–8 (2008)

    Google Scholar 

  6. Tai, Y., Du, H., Brown, M., Lin, S.: Correction of spatially varying image and video motion blur using a hybrid camera. IEEE Trans. Pattern Anal. Mach. Intell 32, 1012–1028 (2010)

    Article  Google Scholar 

  7. Brandi, F., de Queiroz, R., Mukherjee, D.: Super-resolution of video using key frames and motion estimation. In: Proceedings of the ICIP, pp. 321–324 (2010)

    Google Scholar 

  8. Zhang, L., Wu, X.: An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans. Image Process. 15, 2226–2238 (2006)

    Article  Google Scholar 

  9. Allebach, J.P., Wong, P.W.: Edge-directed interpolation. In: Proceedings of the ICIP, pp. 707–710 (1996)

    Google Scholar 

  10. Li, X., Orchard, M.T.: New edge-directed interpolation. IEEE Trans. Image Process. 10, 1521–1527 (2001)

    Article  Google Scholar 

  11. Wang, Q., Ward, R.K.: A new orientation-adaptive interpolation method. IEEE Trans. Image Process. 16, 889–900 (2007)

    Article  MathSciNet  Google Scholar 

  12. Tsai, R.Y., Huang, T.S.: Multiple frame restoration and registration. In: Advances in Computer Vision and Image Processing, pp. 317–339 (1984)

    Google Scholar 

  13. Capel, D., Zisserman, A.: Computer vision applied to super-resolution. IEEE Sig. Process. Mag. 20, 75–86 (2003)

    Article  Google Scholar 

  14. Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. IEEE Sig. Process. Mag. 20, 21–36 (2003)

    Article  Google Scholar 

  15. Farsiu, S., Robinson, M.D., Elad, M., Milanfar, P.: Fast and robust multiframe super resolution. IEEE Trans. Image Process. 13, 1327–1344 (2004)

    Article  Google Scholar 

  16. Fu, Z., Li, Z., Ding, L., Nguyen, T.: Translation invariance-based super resolution method for mixed resolution multiview video. In: Proceedings of the ICIP, pp. 5457–5461 (2014)

    Google Scholar 

  17. Ancuti, C., Ancuti, C.O., Bekaert, P.: Video super-resolution using high quality photographs. In: Proceedings of the ICASSP, pp. 862–865 (2010)

    Google Scholar 

  18. Capel, D., Zisserman, A.: Super-resolution from multiple views using learnt image models. In: Proceedings of the CVPR, pp. 627–634 (2001)

    Google Scholar 

  19. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Comput. Graph. Appl. 22, 56–65 (2002)

    Article  Google Scholar 

  20. Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding. In: Proceedings of the CVPR, pp. 275–282 (2004)

    Google Scholar 

  21. Buades, A., Coll, B., Morel, J.M.: Nonlocal image and movie denoising. Int. J. Comput. Vis. 76, 123–139 (2008)

    Article  Google Scholar 

  22. Protter, M., Elad, M., Takeda, H., Milanfar, P.: Generalizing the nonlocal-means to super-resolution reconstruction. IEEE Trans. Image Process 18, 36–51 (2009)

    Article  MathSciNet  Google Scholar 

  23. Basavaraja, S.V., Bopardikar, A.S., Velusamy, S.: Detail warping based video super-resolution using image guides. In: Proceedings of the ICIP, pp. 2009–2012 (2010)

    Google Scholar 

  24. Lengyel, R., Soroushmehr, S.M.R., Shirani, S.: Multi-view video super-resolution for hybrid cameras using modified NLM and adaptive thresholding. In: Proceedings of the ICIP, pp. 5437–5441 (2014)

    Google Scholar 

  25. Wong, A., Fieguth, P., Clausi, D.: A perceptually adaptive approach to image denoising using anisotropic non-local means. In: Proceedings of the ICIP, pp. 537–540 (2008)

    Google Scholar 

  26. Amanatiadis, A., Andreadis, I., Konstantinidis, K.: Design and implementation of a fuzzy area-based image-scaling technique. IEEE Trans. Instrum. Meas. 57, 1504–1513 (2008)

    Article  Google Scholar 

  27. Lopez, S., Callico, G.M., Tobajas, F., Lopez, J.F., Sarmiento, R.: A novel real-time DSP-based video super-resolution system. IEEE Trans. Consum. Electron. 55, 2264–2270 (2009)

    Article  Google Scholar 

  28. Singhal, N., Park, I.K., Cho, S.: Implementation and optimization of image processing algorithms on handheld gpu. In: Proceedings of the ICIP, pp. 4481–4484 (2010)

    Google Scholar 

  29. Szydzik, T., Callico, G.M., Nunez, A.: Efficient FPGA implementation of a high-quality super-resolution algorithm with real-time performance. IEEE Trans. Consum. Electron. 57, 664–672 (2011)

    Article  Google Scholar 

  30. Wang, C., Chan, S.C.: A new bandwidth adaptive non-local kernel regression algorithm for image/video restoration and its GPU realization. In: Proceedings of the ISCAS, pp. 1388–1391 (2013)

    Google Scholar 

  31. Duchon, C.E.: Lanczos filtering in one and two dimensions. J. Appl. Meteorol. 18, 1016–1022 (1979)

    Article  Google Scholar 

  32. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Natural Science Foundation of China (61671126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yawei Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Li, Y., Li, X., Yao, C., Fu, Z., Yin, X. (2017). Video Super Resolution Using Non-Local Means with Adaptive Decaying Factor and Searching Window. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10116. Springer, Cham. https://doi.org/10.1007/978-3-319-54407-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54407-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54406-9

  • Online ISBN: 978-3-319-54407-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics