Skip to main content

Nonlinear Normal Modes of a Curved Beam and Its Response to Random Loading

  • Conference paper
  • First Online:
Nonlinear Dynamics, Volume 1

Abstract

Hypersonic vehicles are exposed to high amplitude, random, broadband loading and so, in order to predict the life of the system, the geometrically nonlinear response of certain skin panels must be computed for a long time duration. This is a costly procedure when using the finite element (FE) method due to large mesh sizes and small time step requirements. Nonlinear Reduced Order Models (NLROMs) provide an accurate and computationally efficient alternative to compute the response of such structures. The NLROMs still require computationally expensive validation that is conventionally done by comparing responses with the full FE model. An alternative approach to validating NLROMs is to compute their Nonlinear Normal Modes (NNMs), which are independent of the loading scenario and provide information regarding the system’s response over a range of energy or response amplitude. This work investigates the relationship between the NNMs and response of a curved beam to random inputs. The structure contains quadratic and cubic nonlinearities that produce both a softening and hardening behavior of the beam as the system energy is increased. A connection is made between the accuracy of NNMs computed from NLROMs and their random response predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gordon, R., Hollkamp, J.: Reduced-order models for acoustic response prediction. Technical Report, Air Force Research Laboratory (2011)

    Google Scholar 

  2. Schoneman, J.D., Allen, M.S.: Leveraging geometric nonnonlinear for efficient design of thin beams. In: 6th International Conference on Nonlinear Vibrations, Localization and Energy Transfer (2016)

    Google Scholar 

  3. Wang, X., Mignolet, M., Eason, T., Spottswood, S.: Nonlinear reduced order modeling of curved beams: a comparison of methods. In: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2009)

    Google Scholar 

  4. Hollkamp, J.J., Gordon, R.W., Spottswood, S.M.: Nonlinear modal models for sonic fatigue response prediction: a comparison of methods. J. Sound Vib. 284, 3–5 (2005)

    Article  Google Scholar 

  5. Gordon, R.W., Hollkamp, J.J.: Reduced-order modeling of the random response of curved beams using implicit condensation. In: AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2006)

    Book  Google Scholar 

  6. Przekop, A., Rizzi, S.A.: Dynamic snap-through of thin-walled structures by a reduced-order method. AIAA J. 45 (10), 2510–2519 (2007)

    Article  Google Scholar 

  7. Perez, R., Wang, X.Q., Mignolet, M.P.: Nonintrusive structural dynamic reduced order modeling for large deformations: enhancements for complex structures. J. Comput. Nonlinear Dyn. 9 (3), 031008 (2014)

    Article  Google Scholar 

  8. Kuether, R., Deaner, B., Hollkamp, J., Allen, M.: Evaluation of geometrically nonlinear reduced-order models with nonlinear normal modes. AIAA J. 53, 3273–3285 (2015)

    Article  Google Scholar 

  9. Kuether, R., Allen, M.: Validation of nonlinear reduced order models with time integration targeted at nonlinear normal modes. In: Nonlinear Dynamics, vol. 1. Conference Proceedings of the Society for Experimental Mechanics Series (2015)

    Google Scholar 

  10. Damme, C.V., Allen, M.: Using nnms to evaluate reduced order models of curved beam. In: Rotating Machinery, Hybrid Test Methods, Vibro-Acoustics and Laser Vibrometry, vol. 8. Conference Proceedings of the Society for Experimental Mechanics Series, pp. 457–469 (2016)

    Google Scholar 

  11. Schoneman, J., Allen, M., Kuether, R.: Relationships between nonlinear normal modes and response to random inputs. Mech. Syst. Signal Process. 84, 184–199 (2017)

    Article  Google Scholar 

  12. Kumar, P., Narayanan, S.: Modified path integral solution of Fokker-Planck equation: response and bifurcation of nonlinear systems. J. Comput. Nonlinear Dyn. 5 (1), 011004 (2010)

    Article  Google Scholar 

  13. Rosenberg, R.M.: Normal modes of nonlinear dual-mode systems. J. Appl. Mech. 27, 263–268 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kerschen, G., Peeters, M., Vakakis, A., Golinval, J.C.: Nonlinear normal modes, part I: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23 (1), 170–194 (2009)

    Article  Google Scholar 

  15. Peeters, M., Virguie, R., Serandour, G., Kerschen, G.: Nonlinear normal modes, part II: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23 (1), 195–216 (2009)

    Article  Google Scholar 

  16. Spelman, G.M., Langley, R.S.: Statistical energy analysis of nonlinear vibrating systems. Philos. Trans. R. Soc. A 373, 20140400 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher I. VanDamme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

VanDamme, C.I., Allen, M.S. (2017). Nonlinear Normal Modes of a Curved Beam and Its Response to Random Loading. In: Kerschen, G. (eds) Nonlinear Dynamics, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-54404-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54404-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54403-8

  • Online ISBN: 978-3-319-54404-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics