Skip to main content

Metal Toxicity to Certain Vegetables and Bioremediation of Metal-Polluted Soils

  • Chapter
  • First Online:
Microbial Strategies for Vegetable Production

Abstract

The production of quality vegetables is a crucial issue worldwide due to consistently deteriorating soil health. Plants including vegetables absorb a number of metals from soil, some of which have no biological function, but some are toxic at low concentrations, while others are required at low concentration but are toxic at higher concentrations. As vegetables constitute a major source of nutrition and are an important dietary constituent, the heavy metal uptake and bioaccumulation in vegetables is important since it disrupts production and quality of vegetables and consequently affects human health via food chain. Considering the serious threat of metals to vegetables, an attempt in this chapter is made to highlight the effects of certain metals on vegetables grown in different agroclimatic regions of the world. Also, the bioremediation strategies adopted to clean up the metal-contaminated soil is discussed. The results of different studies conducted across the globe on metal toxicity and bioremediation strategies presented in this chapter are likely to help vegetable growers to produce fresh and contaminant-free vegetables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agency for Toxic Substances and Disease Registry (ATSDR) (1989) Toxicological profile for cadmium. Agency for Toxic Substances and Disease Registry, Atlanta, Georgia. Publication No. ATSDR/TP-88/08 PB89-194476

    Google Scholar 

  • Agrawal SB, Singh A, Sharma RK, Agrawal M (2007) Bioaccumulation of heavy metals in vegetables: a threat to human health. Terres Aqua Environ Toxicol 1:13–23

    Google Scholar 

  • Alloway BJ (1990) Heavy metal in soils. J Environ Sci 3:97–99

    Google Scholar 

  • Anil KG, Yunus M, Pandey PK (2003) Bioremediation: ecotechnology for the present century. Int Soc Environ Botanists 9(2):9–19

    Google Scholar 

  • Antonious GF, Dennis SO, Unrine JM et al (2011) Ascorbic acid, β-carotene, sugars, phenols, and heavy metals in sweet potatoes grown in soil fertilized with municipal sewage sludge. J Environ Sci Health, Part B 46:112–121

    Article  CAS  Google Scholar 

  • Antonious GF, Kochhar TS, Coolong T (2012) Yield, quality, and concentration of seven heavy metals in cabbage and broccoli grown in sewage sludge and chicken manure amended soil. J Environ Sci Health Part A: Toxic/Hazard Subs Environ Eng 476:1955–1965

    Article  CAS  Google Scholar 

  • Antonious GF, Snyder JC, Berke T et al (2010) Screening Capsicum chinense fruits for heavy metals bioaccumulation. J Environ Sci Health B 45:562–567

    Article  CAS  PubMed  Google Scholar 

  • Ashfaq A, Khan ZI, Bibi Z et al (2015) Heavy metals uptake by Cucurbita maxima grown in soil contaminated with sewage water and its human health implications in peri-urban areas of Sargodha city. Pak J Zool 47:1051–1058

    CAS  Google Scholar 

  • Awashthi SK (2000) Prevention of food adulteration, Act no. 37 of 1954. Central and state rules as amended for 1999. Ashoka Law House, New Delhi

    Google Scholar 

  • Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Balkhair KS, Ashraf MA (2016) Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi J Biol Sci 23:32–44

    Article  CAS  Google Scholar 

  • Banerjee D, Kuila P, Ganguli A et al (2011) Heavy metal contamination in vegetables collected from market sites of Kolkata. Indian J Elec Environ Agric Food Chem 10:2160–2165

    CAS  Google Scholar 

  • Barrachina AC, Carbonell FB, Beneyto JM (1995) Arsenic uptake, distribution, and accumulation in tomato plants: effect of arsenite on plant growth and yield. J Plant Nutr 18:1237–1250

    Article  Google Scholar 

  • Bertoli AC, Cannata MG, Carvalho R et al (2012) Lycopersicon esculentum submitted to Cd-stressful conditions in nutrition solution: nutrient contents and translocation. Ecotoxicol Environ Saf 86:176–181

    Article  CAS  Google Scholar 

  • Bhatti SM, Anderson CWN, Stewart RB et al (2013) Risk assessment of vegetables irrigated with arsenic-contaminated water. Environ Sci Process Impacts 15:1866–1875

    Article  CAS  PubMed  Google Scholar 

  • Biego GH, Joyeux M, Hartemann P et al (1998) Daily intake of essential minerals and metallic micro pollutants from foods in France. J Anal Sci 20:85–88

    Google Scholar 

  • Brooks RR (1998) Geobotany and hyperaccumulators. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, UK, pp 55–94

    Google Scholar 

  • Budavari SE (2001) The Merck index, 11th edn. Merck and Co, Inc, Rahway, pp 432–435

    Google Scholar 

  • Burzynski M, Klobus G (2004) Changes of photosynthetic parameters in cucumber leaves under Cu, Cd and Pb stress. Photosynthetica 42:505–510

    Article  CAS  Google Scholar 

  • Cai L, Xu Z, Ren M, Guo Q et al (2012) Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China. Ecotoxicol Environ Saf 78:2–8

    Article  CAS  PubMed  Google Scholar 

  • Caporale AG, Sommella A, Lorito M et al (2014) Trichoderma spp. alleviate phytotoxicity in lettuce plants (Lactuca sativa L.) irrigated with arsenic-contaminated water. J Plant Physiol 171:1378–1384

    Article  CAS  PubMed  Google Scholar 

  • Castro A (1998) Chromium in a series of Portuguese plants used in the herbal treatment of diabetes. J Biol Trace Elem Res 62:101–106

    Article  CAS  Google Scholar 

  • Chandra S, Saha R, Pal P (2016) Arsenic uptake and accumulation in okra (Abelmoschus esculentus) as affected by different arsenical speciation. Bull Environ Contam Toxicol 96:395–400

    Article  CAS  PubMed  Google Scholar 

  • Chanu LB, Gupta A (2016) Phytoremediation of lead using Ipomoea aquatica Forsk. in hydroponic solution. Chemosphere 156:407–411

    Article  CAS  Google Scholar 

  • Dafelseed M (2007) Heavy metals and pesticides residues in selected fresh vegetables. B.Sc., University of Khartoum, pp 45–49

    Google Scholar 

  • Demirezen D, Aksoy A (2006) Heavy metal levels in vegetables in Turkey are within safe limits for Cu, Zn, Ni and exceeded for Cd and Pb. J Food Qual 29:252–265

    Article  CAS  Google Scholar 

  • Dermentzis K (2009) Copper removal from industrial wastewaters by means of electrostatic shielding driven electrodeionization. J Eng Sci Tech Rev 2:131–136

    CAS  Google Scholar 

  • Derome J, Nieminen T (1998) Metal and macronutrient fluxes in heavy-metal polluted Scots pine ecosystems in SW Finland. Environ Poll 103:219–228

    Article  CAS  Google Scholar 

  • Ding C, Zhang T, Wang X, Zhou F, Yang Y, Yin Y (2014) Effects of soil type and genotype on cadmium accumulation by rootstalk crops: implications for phytomanagement. Int J Phytoremediation 16:1018–1030

    Article  CAS  PubMed  Google Scholar 

  • Dinis MDL, Fiúza A (2011) Exposure assessment to heavy metals in the environment: measures to eliminate or reduce the exposure to critical receptors. In: Simeonov LI et al (eds) Environmental heavy metal pollution and effects on child mental development. Springer, Netherlands, pp 27–50

    Chapter  Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K et al (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    Article  CAS  Google Scholar 

  • Dogheim SM, El-Ashraf MM, Alla SG et al (2004) Pesticides and heavy metals levels in Egyptian leafy vegetables and some aromatic medicinal plants. J Food Addit Contam 21:323–330

    Article  CAS  Google Scholar 

  • Dourado MN, Souza LA, Martins PF et al (2014) Burkholderia sp. SCMS54 triggers a global stress defense in tomato enhancing cadmium tolerance. Water Air Soil Pollut 225:1–16

    Article  CAS  Google Scholar 

  • Drechsel P, Keraita B (eds) (2014) Irrigated urban vegetable production in Ghana: characteristics, benefits and risk mitigation, 2nd edn. International Water Management Institute (IWMI), Colombo, Sri Lanka

    Google Scholar 

  • Ebdon L (2001) Trace element speciation for environment, food and health. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • European Union (EU) (2002) Heavy metals in wastes. European Commission on Environment. http://ec.europa.eu/environment/waste/studies/elv/heavymetals_report.pdf

  • EU (2006) Commission regulation (EC) No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union L364:5–24

    Google Scholar 

  • FAO (1985) Water quality for agriculture. Paper no. 29 (Rev. 1) UNESCO, Publication, Rome

    Google Scholar 

  • FAO/WHO (2001) Food additives and contaminants. Joint Codex Alimentarius Commission, FAO/WHO Food Standards Programme 34:745–750

    Google Scholar 

  • Ferri R, Hashim D, Smith DR et al (2015) Metal contamination of home garden soils and cultivated vegetables in the province of Brescia, Italy: implications for human exposure. Sci Total Environ 518:507–517

    Article  PubMed  CAS  Google Scholar 

  • Fiona M, Ravi A, Rana PB (2003) Executive summary of technical report. Heavy metal contamination of vegetables in Delhi, Imperial College, London, pp 248–256

    Google Scholar 

  • Flora SJS, Mittal M, Mehta A (2008) Heavy metal induced oxidative stress and it’s possible reversal by chelation therapy. Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Gwalior, India. Indian J Med Res 128:501–502

    CAS  PubMed  Google Scholar 

  • Franco-Hernández, MO, Montes-Villafàn, S, Ramírez-Melo M et al (2010) Comparative analysis of two phytohormone and siderophores rhizobacteria producers isolated from heavy metal contaminated soil and their effect on Lens esculenta growth and tolerance to heavy metals. In: Mendez-Vilas A (ed) Current research technology and education topics in applied microbiology and microbial biotechnology, Formatex 2010, Spain, pp 74–80

    Google Scholar 

  • Gadd GM, White C (1989) Havy metal and redionuclide accumulation and toxicity in fungi and yeast. In: Poole RK, Gadd GM (eds) Metal-microb interactions. IRL Press, Oxford, pp 19–38

    Google Scholar 

  • Gao Y, Miao C, Wang Y et al (2012) Metal-resistant microorganisms and metal chelators synergistically enhance the phytoremediation efficiency of Solanum nigrum L. in Cd- and Pb-contaminated soil. Environ Technol 33:1383–1389

    Article  CAS  PubMed  Google Scholar 

  • Garcia E, Cabrera C, Lorenzo ML et al (2001) Daily dietary intake of chromium in southern Spain measured with duplicate diet sampling. J Nutr 86:391–396

    Article  CAS  Google Scholar 

  • Ghani A (2011) Effect of chromium toxicity on growth, chlorophyll and some mineral nutrients of Brassica juncea L. Egypt Acad J Biol Sci 2:9–15

    Google Scholar 

  • Ghosh AK, Bhatt MA, Agrawal HP (2012) Effect of long-term application of treated sewage water on heavy metal accumulation in vegetables grown in northern India. Environ Monit Assess 184:1025–1036

    Article  CAS  PubMed  Google Scholar 

  • Gopal R, Rizvi AH, Nautiyal N (2009) Chromium alters iron nutrition and water relations of spinach. J Plant Nutr 32:1551–1559

    Article  CAS  Google Scholar 

  • Grant CA (2011) Influence of phosphate fertilizer on cadmium in agricultural soils and crops. Pedologist 54:143–155

    CAS  Google Scholar 

  • Haghighi M (2011) Sewage sludge application in soil improved leafy vegetable growth. J Biol Environ Sci 5(15)

    Google Scholar 

  • He LY, Chen ZJ, Ren GD et al (2009) Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria. Ecotoxicol Environ Saf 72:1343–1348

    Article  CAS  PubMed  Google Scholar 

  • Hernandez LE, Cooke DT (1997) Modification of the root plasma membrane lipid composition of cadmium-treated Pisum sativum. J Exp Bot 48:1375–1381

    Article  CAS  Google Scholar 

  • Hughes MF, Beck BD, Chen Y et al (2011) Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 123:305–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain MM, Saeed A, Khan AA et al (2015) Differential responses of one hundred tomato genotypes grown under cadmium stress. Genet Mol Res 14:13162–13171

    Article  CAS  PubMed  Google Scholar 

  • Intawongse M, Dean JR (2006) Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract. Food Addit Contam 23:36–48

    Article  CAS  PubMed  Google Scholar 

  • Ionenko IF, Anisimov AV, Karimova FG (2006) Water transport in maize roots under the influence of mercuric chloride and water stress: a role of water channels. Biol Plant 50:74–80

    Article  CAS  Google Scholar 

  • IPCS (1992) International Programme on Chemical Safety (IPCS). Environmental health criteria 134, 135: cadmium

    Google Scholar 

  • Islam MS, Hoque MF (2014) Concentrations of heavy metals in vegetables around the industrial area of Dhaka city, Bangladesh and health risk assessment. Int Food Res J 21:2121–2126

    Google Scholar 

  • Islam GBR, Khan FE, Hoque MM et al (2014) Consumption of unsafe food in the adjacent area of Hazaribag tannery campus and Buriganga River embankments of Bangladesh: heavy metal contamination. Environ Monit Assess 186:7233–7244

    Article  CAS  PubMed  Google Scholar 

  • Itanna F (2002) Metals in leafy vegetables grown in Addis Ababa and toxicological implications. Ethiop J Health Dev 16:295–302

    Article  Google Scholar 

  • IWMI (2006) Recycling realities: managing health risks to make wastewater an asset. Water Policy Brief 17:432–434

    Google Scholar 

  • Jamali MK, Kazi TG, Arain MB et al (2007) Heavy metal contents of vegetables grown in soil, irrigated with mixtures of wastewater and sewage 53 sludge in Pakistan, using ultrasonic-assisted pseudo-digestion. J Agron Crop Sci 193:218–228

    Article  CAS  Google Scholar 

  • Janicka-Russak M, KabaÅ‚a K, BurzyÅ„ski M (2012) Different effect of cadmium and copper on H+-ATPase activity in plasma membrane vesicles from Cucumis sativus roots. J Exp Bot 63:4133–4142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jassir MS, Shaker A, Khaliq MA (2005) Deposition of heavy metals on green leafy vegetables sold on roadsides of Riyadh City, Saudi Arabia. J Environ Contam Toxicol 75:1020–1027

    Article  CAS  Google Scholar 

  • Jiang CY, Sheng XF, Qian M et al (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal polluted soil. Chemosphere 72:157–164

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Yang Y, Xu WH et al (2014) Effects of ryegrass and arbuscular mycorrhiza on activities of antioxidant enzymes, accumulation and chemical forms of cadmium in different varieties of tomato. Huan Jing Ke Xue 35:2349–2357

    CAS  PubMed  Google Scholar 

  • Jing J, Logan T (1992) Measurement of levels of heavy metal contamination in vegetables grown and sold in selected areas in Lebanon. J Environ Qual 21:1–8

    Article  Google Scholar 

  • John HD (2002) Heavy metals: a meaningless term (IUPAC Technical Report). Pure Appl Chem 74:793–807

    Google Scholar 

  • Johnson MS, Cooke JA, Stevenson JKW (1994) Revegetation of metalliferous wastes and land after metal mining. In: Hester RE, Harrison RM (eds) Mining and its environmental impact, issues in environmental science and technology. Royal Society of Chemistry, London, pp 31–48

    Chapter  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils, 3rd edn. CRC Press, Boca Raton and London

    Google Scholar 

  • Kachenko AG, Singh B (2006) Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water Air Soil Pollut 169:101–123

    Article  CAS  Google Scholar 

  • Kang CH, Kwon YJ, So JS (2016) Bioremediation of heavy metals by using bacterial mixtures. Ecol Eng 89:64–69

    Article  Google Scholar 

  • Kapoor A, Viraraghavan T, Roy Cullimore D (1999) Removal of heavy metals using the fungus Aspergillus niger. Bioresour Technol 70:95–104

    Article  CAS  Google Scholar 

  • Karigar C, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enz Res 2011:11

    Google Scholar 

  • Khan N, Bano A (2016) Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation. Int J Phytoremediation 18:211–221

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Khan S, Khan MA et al (2015a) The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environ Sci Pollut Res Int 22:13772–13799

    Article  CAS  PubMed  Google Scholar 

  • Khan AR, Ullah I, Khan AL et al (2015b) Improvement in phytoremediation potential of Solanum nigrum under cadmium contamination through endophytic-assisted Serratia sp. RSC-14 inoculation. Environ Sci Poll Res 22:14032–14042

    Article  CAS  Google Scholar 

  • Khan AR, Waqas M, Ullah I et al (2016) Culturable endophytic fungal diversity in the cadmium hyperaccumulator Solanum nigrum L. and their role in enhancing phytoremediation. Environ Exp Bot. doi:10.1016/j.envexpbot.2016.03.005

    Google Scholar 

  • Kim JO, Lee YW, Chung J (2013) The role of organic acids in the mobilization of heavy metals from soil. KSCE J Civil Eng 17:1596–1602

    Article  Google Scholar 

  • Kumar KV, Patra DD (2013) Influence of nickel and cadmium resistant PGPB on metal accumulation and growth responses of Lycopersicon esculentum plants grown in fly ash amended soil. Water Air Soil Pollut 224:1–10

    Google Scholar 

  • Kumar M, Rahman MM, Ramanathan AL et al (2016) Arsenic and other elements in drinking water and dietary components from the middle Gangetic plain of Bihar, India: health risk index. Sci Total Environ 539:125–134

    Article  CAS  PubMed  Google Scholar 

  • Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant, soil, metal interaction and assessment of pertinent agronomic issues. J Hazard Subs Res 2:1–25

    Google Scholar 

  • Lenntech (2006) Water treatment and air purification. http://www.lenntech.com/heavymetals.htm. Accessed 23 Jan 2006

  • Li F, Zeng XY, Wu CH, Duan ZP et al (2013) Ecological risks assessment and pollution source identification of trace elements in contaminated sediments from the pearl river delta, China. Biol Trace Elem Res 155:301–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Huang B, Bi X, Ren Z et al (2013) Heavy metals and organic compounds contamination in soil from an e-waste region in South China. Environ Sci Process Impacts 15:919–929

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhang S, Shan X et al (2005) Toxicity of arsenate and arsenite on germination seedling growth and amylolytic activity of wheat. Chemosphere 61:293–301

    Article  CAS  PubMed  Google Scholar 

  • Lokeshwari H, Chandrappa GT (2006) Impact of heavy metal contamination of Bellandur lake on soil and cultivated vegetation. Curr Sci 91:622–627

    Google Scholar 

  • Lui WX, Li HH, Li SR et al (2006) Heavy metal accumulation of edible vegetables cultivated in agricultural soil in the suburb of Zhengzhou City, People’s Republic of China. Bull Environ Contam Toxicol 76:163–170

    Article  CAS  PubMed  Google Scholar 

  • Luo S, Wan Y, Xiao X et al (2011) Isolation and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L. and its potential for remediation. Appl Microbiol Biotechnol 89:1637–1644

    Article  CAS  PubMed  Google Scholar 

  • Magyarosy A, Laidlaw RD, Kilaas R et al (2002) Nickel accumulation and nickel oxalate precipitation by Aspergillus niger. Appl Microbiol Biotechnol 59:382–388

    Article  CAS  PubMed  Google Scholar 

  • Mani D, Sharma B, Kumar C, Balak S (2012) Cadmium and lead bioaccumulation during growth stages alters sugar and vitamin C content in dietary vegetables. Proc Natl Acad Sci India Sect B: Biol Sci 82:477–488

    Article  CAS  Google Scholar 

  • Marin AR, Pezeshki SR, Masschelen PH et al (1993) Effect of dimethylarsenic acid (DMAA) on growth, tissue arsenic, and photosynthesis of rice plants. J Plant Nutr 16:865–880

    Article  CAS  Google Scholar 

  • Mello JP (2003) Food safety: contaminants and toxins. CABI Publishing, Wallingford, Oxon, UK; Cambridge, MA, p 480

    Book  Google Scholar 

  • Michio X (2005) Bioaccumulation of organochlorines in crows from an Indian open waste dumping site: evidence for direct transfer of dioxin-like congeners from the contaminated soil. J Environ Sci Technol 39:4421–4430

    Article  CAS  Google Scholar 

  • Midio Y, Satake M (2003) Chemicals and toxic metals in the environment. Discovery Publishing House, New Delhi, pp 45–68

    Google Scholar 

  • Mohamed AE, Rashed MN, Mofty A (2003) Assessment of essential and toxic elements in some kinds of vegetables. Ecotoxicol Environ Saf 55:251–260

    Article  CAS  PubMed  Google Scholar 

  • Mosa KA, Saadoun I, Kumar K et al (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7:303. PMCID: PMC4791364

    Article  PubMed  PubMed Central  Google Scholar 

  • Muchuweti M, Birkett JW, Chinyanga E et al (2006) Heavy metal content of vegetables irrigated with mixtures of wastewater and sewage sludge in Zimbabwe: implications for human health. Agric Ecosyst Environ 112:41–48

    Article  CAS  Google Scholar 

  • Musilova J, Bystricka J, Lachman J et al (2016) Potatoes—a crop resistant against input of heavy metals from the metallicaly contaminated soil. Int J Phytoremediation 18:547–552

    Article  CAS  PubMed  Google Scholar 

  • Nacke H, Gonçalves A Jr, Schwantes D et al (2013) Availability of heavy metals (Cd, Pb, and Cr) in agriculture from commercial fertilizers. Arch Environ Contam Toxicol 64:537–544

    Article  CAS  PubMed  Google Scholar 

  • Naz T, Khan MD, Ahmed I et al (2015) Biosorption of heavy metals by Pseudomonas species isolated from sugar industry. Toxicol Ind Health 32:1619–1627

    Article  PubMed  Google Scholar 

  • Neilson JW, Artiola JF, Maier M (2003) Characterization of lead removal from contaminated soils by non-toxic soil washing agents. J Environ Qual 32:899–908

    Article  CAS  PubMed  Google Scholar 

  • Ng CC, Rahman MM, Boyc AM, Abbas MR (2016) Heavy metals phyto assessment in commonly grown vegetables: water spinach (I. aquatica) and okra (A. esculentus). Springer plus 5:469

    Google Scholar 

  • Oluwole SO, Olubunmi Makinde SC, Yusuf KA et al (2013) Determination of heavy metals contaminants in leafy vegetables cultivated by the road side. Int J Eng Res Dev 7:01–05

    Google Scholar 

  • Osaili TM, Al Jamali AF, Makhadmeh IM et al (2016) Heavy metals in vegetables sold in the local market in Jordan. Food Addit Contamin Part B 9:223–229

    Article  CAS  Google Scholar 

  • Parashar P, Prasad FM (2013) Study of heavy metal accumulation in sewage irrigated vegetables in different regions of Agra District, India. J Soil Sci 3:1

    Google Scholar 

  • Pederno NJI, Gomez R, Moral G et al (1997) Heavy metals and plant nutrition and development. Rec Res Dev Phytochem 1:173–179

    Google Scholar 

  • Pell A, Márquez A, López-Sánchez JF et al (2013) Occurrence of arsenic species in algae and freshwater plants of an extreme arid region in northern Chile, the Loa River Basin. Chemosphere 90:556–564

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  PubMed  Google Scholar 

  • Pizarro I, Gomez M, Roman D et al (2016) Bioavailability, bioaccesibility of heavy metal elements and speciation of as in contaminated areas of Chile. J Environ Anal Chem 3:175

    Article  Google Scholar 

  • Prabu PC (2009) Impact of heavy metal contamination of Akaki river of Ethiopia on soil and metal toxicity on cultivated vegetable crops. Elec J Environ Agric Food Chem 8:818–827

    CAS  Google Scholar 

  • Quaghebeur M, Rengel Z (2003) The distribution of arsenate and arsenite in shoots and roots of Holcus lanatus is influenced by arsenic tolerance and arsenate and phosphate supply. Plant Physiol 132:1600–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radwan MA, Salama AK (2006) Market basket survey for some heavy metals in Egyptian fruits and vegetables. J Food Chem Toxicol 44:1273–1278

    Article  CAS  Google Scholar 

  • Rahman MM, Ng JC, Naidu R (2009) Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. Environ Geochem Health 31:189–200

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV et al (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Rehman ZU, Khan S, Qin K et al (2016) Quantification of inorganic arsenic exposure and cancer risk via consumption of vegetables in southern selected districts of Pakistan. Sci Total Environ 550:321–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryser P, Emerson P (2007) Growth, root and leaf structure, and biomass allocation in Leucanthemum vulgare Lam. (Asteraceae) as influenced by heavy-metal-containing slag. Plant Soil 301:315–324

    Article  CAS  Google Scholar 

  • Saha S, Hazra GC, Saha B et al (2015) Assessment of heavy metals contamination in different crops grown in long-term sewage-irrigated areas of Kolkata, West Bengal, India. Environ Monit Assess 187:1–12

    Article  CAS  Google Scholar 

  • Santiago M, Bolan NS (2010) Phytoremediation of arsenic contaminated soil and water. In: Proceedings of 19th world congress of soil science. Soil Solutions for a Changing World, Brisbane, Australia

    Google Scholar 

  • Santra SC, Samal AC, Bhattacharya P et al (2013) Arsenic in food chain and community health risk: a study in Gangetic West Bengal. Procedia Environ Sci 18:2–13

    Article  CAS  Google Scholar 

  • Sharma RK, Agrawal M (2006) Single and combined effects of cadmium and zinc on carrots: uptake and bioaccumulation. J Plant Nutr 29:1791–1804

    Article  CAS  Google Scholar 

  • Sharma RK, Agrawal M, Marshall F (2006) Heavy metals contamination in vegetables grown in wastewater irrigated areas of Varanasi, India. Bull Environ Contam Toxicol 77:312–318

    Article  CAS  PubMed  Google Scholar 

  • Sharma RK, Agrawal M, Marshall F (2007) Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol Environ Saf 66:258–226

    Article  CAS  Google Scholar 

  • Sharma RK, Agrawal M, Marshall FM (2009) Heavy metals in vegetables collected from production and market sites of a tropical urban area of India. Food Chem Toxicol 47:583–591

    Article  CAS  PubMed  Google Scholar 

  • Shaw BP, Sahu SK, Mishra RK (2004) Heavy metal induced oxidative damage in terrestrial plants. In: Prasad MNV (ed) Heavy metal stress in plants. Springer, Berlin Heidelberg, pp 84–126

    Chapter  Google Scholar 

  • Sheoran IS, Singal HR, Singh R (1990) Effect of cadmium and nickel on photosynthesis and the enzymes of the photosynthetic carbon reduction cycle in pigeonpea (Cajanus cajan L.) Photosynth Res 23:345–351

    Article  CAS  PubMed  Google Scholar 

  • Singh VP (2006) Metal toxicity and tolerance in plants and animals. Sarup and Sons, New Delhi, India, p 238

    Google Scholar 

  • Singh RP, Agrawal M (2007) Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere 67:2229–2240

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Kumar M (2006) Heavy metal load of soil, water and vegetables in peri-urban Delhi. Environ Monit Assess 120:79–91

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Gautam N, Mishra A et al (2011) Heavy metals and living systems: an overview. Indian J Pharm 43:246–253

    Article  CAS  Google Scholar 

  • Singh A, Sharma RK, Agrawal M et al (2010) Risk assessment of heavy metal toxicity through contaminated vegetables from waste water irrigated area of Varanasi, India. Trop Ecol 51:375–387

    CAS  Google Scholar 

  • Singh D, Tiwari A, Gupta R (2012) Phytoremediation of lead from wastewater using aquatic plants. J Agric Tech 8:1–11

    Google Scholar 

  • Sinha S, Gupta AK, Bhatt K et al (2006) Distribution of metals in the edible plants grown at Jajmau, Kanpur (India) receiving treated tannery wastewater: relation with physico-chemical properties of the soil. Environ Monit Assess 115:1–22

    Article  CAS  PubMed  Google Scholar 

  • Sinha S, Pandey K, Gupta AK et al (2005) Accumulation of metals in vegetables and crops grown in the area irrigated with river water. Bull Environ Contam Toxicol 74:210–218

    Article  CAS  PubMed  Google Scholar 

  • Skeffington RA, Shewry R, Peterson PJ (1996) Chromium uptake and transport in barley seedlings (Hordeum vulgare L.) J Int Environ 132:209–214

    Google Scholar 

  • Stalikas CD, Mantalovas AC, Pilidis GA (1997) Multielement concentrations in vegetable species grown in two typical agricultural areas of Greece. Sci Total Environ 206:17–24

    Article  CAS  PubMed  Google Scholar 

  • Tiwari KK, Singh NK, Patel MP et al (2011) Metal contamination of soil and translocation in vegetables growing under industrial wastewater irrigated agricultural field of Vadodara, Gujarat, India. Ecotoxicol Environ Saf 74:1670–1677

    Article  CAS  PubMed  Google Scholar 

  • Turer DG, Maynard BJ (2003) Heavy metal contamination in highway soils. Comparison of Corpus Christi, Texas and Cincinnati, Ohio shows organic matter is key to mobility. Clean Technol Environ Policy 4:235–245

    Article  CAS  Google Scholar 

  • UdDin I, Bano A, Masood S (2015) Chromium toxicity tolerance of Solanum nigrum L. and Parthenium hysterophorus L. plants with reference to ion pattern, antioxidation activity and root exudation. Ecotoxicol Environ Saf 113:271–278

    Article  CAS  PubMed  Google Scholar 

  • Ullah A, Heng S, Munis MFH et al (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    Article  CAS  Google Scholar 

  • Uzu G, Schreck E, Xiong T et al (2014) Urban market gardening in Africa: foliar uptake of metal (loid) s and their bioaccessibility in vegetables; implications in terms of health risks. Water Air Soil Pollut 225:1–13

    Article  CAS  Google Scholar 

  • Wang Y, Qiu Q, Xin G, Yang Z et al (2013) Heavy metal contamination in a vulnerable mangrove swamp in South China. Environ Monit Assess 185:5775–5787

    Article  CAS  PubMed  Google Scholar 

  • WHO (1992) Environmental health criteria 134: cadmium. Geneva, p 156

    Google Scholar 

  • WHO/FAO (2007) Joint FAO/WHO Food Standard Programme Codex Alimentarius Commission 13th session. Report of the thirty eight session of the Codex Committee on Food Hygiene, Houston, USA, ALINORM 07/30/13

    Google Scholar 

  • Woimant F, Trocello JM (2014) Disorders of heavy metals. Handb Clin Neurol 120:851–864

    Article  PubMed  Google Scholar 

  • Wu Z, Ren H, McGrath SP et al (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong T, Dumat C, Pierart A et al (2016) Measurement of metal bioaccessibility in vegetables to improve human exposure assessments: field study of soil–plant–atmosphere transfers in urban areas, South China. Environ Geochem Health 38:1–19

    Article  CAS  Google Scholar 

  • Xiong TT, Leveque T, Austruy A et al (2014) Foliar uptake and metal (loid) bioaccessibility in vegetables exposed to particulate matter. Environ Geochem Health 36:897–909

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Wu L, Tu S et al (2010) Microbial communities and functional genes associated with soil arsenic contamination and the rhizosphere of the arsenic-hyperaccumulating plant Pteris vittata L. Appl Environ Microbiol 76:7277–7284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang HM, Zhang XY, Wang GX (2004) Effects of heavy metals on stomatal movements in broad bean leaves. Russ J Plant Physiol 51:464–468

    Article  CAS  Google Scholar 

  • Yu HY, Li FB, Yu WM, Li YT et al (2013) Assessment of organochlorine pesticide contamination in relation to soil properties in the Pearl River Delta, China. Sci Total Environ 447:160–168

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Xia B, Fan C, Zhao P et al (2012) Human health risk from soil heavy metal contamination under different land uses near Dabaoshan mine, southern China. Sci Total Environ 417:45–54

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Yang WT, Zhou X et al (2016) Accumulation of heavy metals in vegetable species planted in contaminated soils and the health risk assessment. Int J Environ Res Public Health 13:289

    Article  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saima Saif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Saif, S., Khan, M.S., Zaidi, A., Rizvi, A., Shahid, M. (2017). Metal Toxicity to Certain Vegetables and Bioremediation of Metal-Polluted Soils. In: Zaidi, A., Khan, M. (eds) Microbial Strategies for Vegetable Production. Springer, Cham. https://doi.org/10.1007/978-3-319-54401-4_8

Download citation

Publish with us

Policies and ethics