Skip to main content

Perspectives of Plant Growth Promoting Rhizobacteria in Growth Enhancement and Sustainable Production of Tomato

  • Chapter
  • First Online:
Book cover Microbial Strategies for Vegetable Production

Abstract

Tomato is an important horticultural product with a high content of bioactive compounds such as folate, ascorbate, polyphenols, and carotenoids and many other essential nutrients. Due to these, tomatoes are considered extremely valuable to human health. To optimize tomato production, chemical fertilizers and pesticides are frequently used. These chemicals are however, destructive for both crops and soil ecosystems. A reduction of these detrimental practices is therefore urgently required to protect both tomato and environments from damaging effects of agrochemicals. In this context, microbial inoculation especially those consisting of plant growth-promoting rhizobacteria (PGPR) could be used to replace chemical fertilizers/pesticides. Also, PGPR can be integrated with such chemical practices to reduce their application in tomato cultivation. Plant growth-promoting rhizobacteria that naturally inhabit the rhizosphere stimulate the growth and development of tomato plants directly or indirectly via availability of many essential plant nutrients, phytohormones, or through suppression/destruction of plant diseases. A better understanding of the plant growth-promotion activity of these bacterial strains is likely to enhance the production of safe, fresh, and high-quality tomatoes while reducing chemical inputs in different agronomic setups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbamondi GR, Tommonaro G, Weyens N (2016) Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chem Biol Technol Agric 3:1

    Article  Google Scholar 

  • Abdalla SA, Soad AAA, Elshiekh AI, Ahmed MEN (2014) In vitro screening of Bacillus isolates for biological control of early blight disease of tomato in Shambat soil. W J Agric Res 2:47–50

    Google Scholar 

  • Adewuyi GO, Ademoyegun OT (2008) Analysis of vitamin C and major carotenoids in different fractions of tomatoes. Proc Int Conf Sci Tech Africa 2:65–73

    Google Scholar 

  • Aeron A, Pandey P, Kumar S, Maheshwari DK (2011) Emerging role of plant growth promoting rhizobacteria. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystem. Springer Verlag, Berlin/Heidelberg, pp 1–26

    Chapter  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Zahir ZA, Khalid M (2013) Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Physiol Biochem 63:170–176

    Article  CAS  PubMed  Google Scholar 

  • Ahmad E, Zaidi A, Khan MS (2016) Effects of plant growth promoting rhizobacteria on the performance of greengram under field conditions. JJBS 9(2):79–88

    Google Scholar 

  • Ahmed A, Hasnain S (2010) Auxin producing Bacillus sp.: auxin quantification and effect on the growth Solanum tuberosum. Pure Appl Chem 82:313–319

    Article  CAS  Google Scholar 

  • Ahmed L, Martin-Diana AB, Rico D, Barry-Ryan C (2011) The antioxidant properties of whey permeate treated fresh-cut tomatoes. Food Chem 24:1451–1457

    Article  CAS  Google Scholar 

  • Akram W, Anjum T, Ali B (2015) Co-cultivation of tomato with two Bacillus strains: effects on growth and yield. J Anim Plant Sci 25:1644–1651

    Google Scholar 

  • Akram W, Mahboob A, Javed AA (2013) Bacillus thuringiensis strain 199 can induce systemic resistance in tomato against Fusarium wilt. Eur J Microbiol Immunol 3:275–280

    Article  Google Scholar 

  • Ali S, Charles TC, Glick BR (2012) Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase. J Appl Microbiol 113:1139–1144

    Article  CAS  PubMed  Google Scholar 

  • Almaghrabi OA, Massoud S, Abdelmoneim TS (2013) Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J Biol Sci 20:57–61

    Article  PubMed  Google Scholar 

  • Aloni R, Aloni E, Langhans M (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez MADB, Gagne S, Antoun H (1995) Effect of compost on rhizosphere microflora of the tomato and on the incidence of plant growth-promoting rhizobacteria. Appl Environ Microbiol:194–199

    Google Scholar 

  • Amara U, Khalid R, Hayat R (2015) Soil bacteria and phytohormones for sustainable crop production. In: Maheshwari DK (ed) Bacterial metabolites in sustainable agroecosystem. Springer International, Switzerland, pp 87–103

    Chapter  Google Scholar 

  • Anandham R, Janahiraman V, Gandhi PI, Kwon SW, Chung KY, Han GH, Choi JH, Sa TM (2014) Early plant growth promotion of maize by various sulfur oxidizing bacteria that uses different thiosulfate oxidation pathway. Afr J Microbiol Res 8:19–27

    Article  CAS  Google Scholar 

  • Anith KN, Sreekumar A, Sreekumar J (2015) The growth of tomato seedlings inoculated with co-cultivated Piriformospora indica and Bacillus pumilus. Symbiosis 65:9–16

    Article  CAS  Google Scholar 

  • Atzorn R, Crozier A, Wheeler CT, Sandberg G (1988) Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175:532–538

    Article  CAS  PubMed  Google Scholar 

  • Azcorn R, Barea JM (1975) Synthesis of auxins, gibberellins and cytokinins by Azotobacter vinelandi and Azotobacter beijerinckii related to effects produced on tomato plants. Plant Soil 43:609–619

    Article  Google Scholar 

  • Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM (2013) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288:4502–4512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bano N, Musarrat J (2003) Isolation and characterization of phorate degrading soil bacteria of environmental and agronomic significance. Lett Appl Microbiol 36:349–353

    Article  CAS  PubMed  Google Scholar 

  • Barriuso J, Solano BR, Fray RG, Cámara M, Hartmann A, Gutiérrez Mañero FJ (2008) Transgenic tomato plants alter quorum sensing in plant growth-promoting rhizobacteria. Plant Biotechnol J 6:442–452

    Article  CAS  PubMed  Google Scholar 

  • Bastián F, Cohen A, Piccoli P, Luna V, Bottini R, Baraldi R, Bottini R (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Grow Reg 24:7–11

    Article  Google Scholar 

  • Bellishree K, Ganeshan G, Ramachandra YL, Rao AS, Chethana BS (2014) Effect of plant growth promoting rhizobacteria (pgpr) on germination, seedling growth and yield of tomato. Int J Rec Sci Res 5:1437–1443

    Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4 Suppl):1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benner M, Linnemann AR, Jongen WMF et al (2007) An explorative study on the systematic development of tomato ketchup with potential health benefits using the chain information model. Trends Food Sci Tech 18:150–158

    Article  CAS  Google Scholar 

  • Bernardo AH, José RVJ, Reginaldo SR, Harllen SAS, Maria CB (2006) Induction of systemic resistance in tomato by the autochthonous phylloplane resident Bacillus cereus. Pesq Agropec Bras, Brasília 41:1247–1252

    Article  Google Scholar 

  • Beutner S, Bloedorn B, Frixel S et al (2001) Quantitative assessment of antioxidant properties of natural colorants and phytochemicals: carotenoids, flavonoids, phenols and indigoids. The role of β-carotene in antioxidant functions. J Sci Food Agric 81:559–568

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bhowmik D, Kumar KPS, Paswan S, Srivastava S (2012) Tomato—a natural medicine and its health benefits. J Pharmacog Phytochem 1:33

    Google Scholar 

  • Botelho GR, Mendonça-Hagler LC (2006) Fluorescent pseudomonads associated with the rhizosphere of crops-an overview. Braz J Microbiol 37:401–416

    Article  CAS  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    Article  CAS  PubMed  Google Scholar 

  • Chandra RV, Prabhuji V, Roopa DA, Ravirajan S, Kishore HC (2007) Efficacy of lycopene in treatment of gingivitis: a randomized placebo controlled clinical trial. Oral Health Prev Dent 5:327–336

    PubMed  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2013) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790–803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chookietwattana K, Maneewan K (2012) Selection of efficient salt-tolerant bacteria containing ACC deaminase for promotion of tomato growth under salinity stress. Soil Environ 31:30–36

    CAS  Google Scholar 

  • Chowdhury SP, Hartmann A, Gao X, Borriss R (2015) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42—a review. Front Microbiol 6:780

    Article  PubMed  PubMed Central  Google Scholar 

  • Dairo KP, Akintunde JK (2012) Evaluation of plant growth-promoting rhizobacteria for the control of bacterial wilt disease of tomato. GJBB 1:253–256

    Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Dashti NH, Montasser MS, Ali NYA, Cherian VM (2014) Influence of plant growth promoting rhizobacteria on fruit yield, pomological characteristics and chemical contents in cucumber mosaic virus-infected tomato plants. Kuwait J Sci 41:205–220

    Google Scholar 

  • Dawwam GE, Elbeltagy Emara AHM, Abbas IH, Hassan MM (2013) Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant. Ann Agric Sci 58:195–201

    Google Scholar 

  • Dorais M, Ehret DL, Papadopoulos AP (2008) Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochem Rev 7:231–250

    Article  CAS  Google Scholar 

  • Dursun A, Ekinci M, Dönmez MF (2010) Effects of foliar application of plant growth promoting bacterium on chemical contents, yield and growth of tomato (Lycopersicon esculentum L.) and cucumber (Cucumis sativus L.) Pak J Bot 42:3349–3356

    CAS  Google Scholar 

  • El-Tantawy ME, Mohamed MAN (2009) Effect of inoculation with phosphate solubilizing bacteria on the tomato rhizosphere colonization process, plant growth and yield under organic and inorganic fertilization. J Appl Sci Res 5:1117–1131

    CAS  Google Scholar 

  • FAOSTAT (2007) http://faostat.fao.org/cgi-bin/nph-db.pl?Subset=agriculture

  • Felici C, Vettori L, Giraldi E, Forino LMC, Toffanin A, Tagliasacchi AM, Nuti M (2008) Single and co-inoculation of Bacillus subtilis and Azospirillum brasilense on Lycopersicon esculentum: effect on plant growth and rhizosphere microbial community. Appl Soil Ecol 40:260–270

    Article  Google Scholar 

  • Flores-Félix JD, Menéndez E, Rivera LP, Marcos-García M, Martínez-Hidalgo P, Mateos PF, Martínez-Molina E, Velázquez ME, García-Fraile P, Rivas R (2013) Use of Rhizobium leguminosarum as a potential biofertilizer for Lactuca sativa and Daucus carota crops. J Plant Nutr Soil Sci 176:876–882

    Article  CAS  Google Scholar 

  • Frohlich K, Kaufmann K, Bitsch R, Bohm V (2006) Effects of ingestion of tomatoes, tomato juice and tomato puree on contents of lycopene isomers, tocopherols and ascorbic acid in human plasma as well as on lycopene isomer pattern. Br J Nutr 95:734–741

    Article  PubMed  CAS  Google Scholar 

  • Gagne S, Dehbi L, Quéré DL, Fournier N (1993) Increase of greenhouse tomato fruit yields by plant growth-promoting rhizobacteria (PGPR) inoculated into the peat-based growing media. Soil Biol Biochem 25:269–272

    Article  Google Scholar 

  • Garcia-Fraile P, Carro L, Robledo M (2012) Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS One 7(5):e38122. doi:10.1371/journal.pone.0038122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George B, Kaur C, Khurdiya DS, Kapoor HC (2004) Antioxidants in tomato (Lycopersium esculentum) as a function of genotype. Food Chem 84:45–51

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica. Article ID: 963401. doi:10.6064/2012/963401

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J et al (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5:355–377

    Article  PubMed  Google Scholar 

  • Goswami D, Parmar S, Vaghela H, Dhandhukia P, Thakker J (2015) Describing Paenibacillus mucilaginosus strain N3 as an efficient plant growth promoting rhizobacteria (PGPR). Cogent Food Agric 1:1

    Google Scholar 

  • Govindasamy V, Senthilkumar M, Magheshwaran V, Kumar U, Bose P, Sharma V, Annapurna K (2011) Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer-Verlag, Berlin, pp 333–364

    Google Scholar 

  • Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39:1968–1977

    Article  CAS  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:2

    Google Scholar 

  • Gutierrez-Manero FJ, Ramos-Solano B, Probanza A, Mehouachi JR, Tadeo F, Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plantarum 111:206–211

    Article  Google Scholar 

  • Hammami I, Hsouna AB, Hamdi N, Gdoura R, Triki MA (2013) Isolation and characterization of rhizosphere bacteria for the biocontrol of the damping-off disease of tomatoes in Tunisia. C R Biol 336:557–564

    Article  PubMed  Google Scholar 

  • Hassan W, David J, Bashir F (2014) ACC-deaminase and/or nitrogen-fixing rhizobacteria and growth response of tomato (Lycopersicon pimpinellfolium Mill.) J Plant Inter 9:869–882

    CAS  Google Scholar 

  • Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5:523–530

    Article  CAS  PubMed  Google Scholar 

  • Heeb A, (2005) Organic or mineral fertilization. Effects on tomato plant growth and fruit quality. Doctoral Thesis, Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  • Heulin T, Achouak W, Berge O, Normand P, Guinebretière MH (2002) Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol 52:607–616

    Article  PubMed  Google Scholar 

  • Hiltner L (1904) About recent experiences and problems the field of soil bacteriology with special consideration of green manure and fallow. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft 98:59–78

    Google Scholar 

  • Hortencia GM, Olalde V, Violante P (2007) Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Sci Hortic 113:103–106

    Article  CAS  Google Scholar 

  • Indiragandhi P, Anandham R, Madhaiyan M, Sa TM (2008) Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr Microbiol 56:327–333

    Article  CAS  PubMed  Google Scholar 

  • Jha CK, Saraf M (2015) Plant growth promoting rhizobacteria (PGPR): a review. E3 J Agric Res Dev 5:108–119

    Google Scholar 

  • Jha CK, Patel D, Rajendran N, Saraf M (2010) Combinatorial assessment on dominance and informative diversity of PGPR from rhizosphere of Jatropha curcas L. J Basic Microbiol 50:211–217

    Article  PubMed  Google Scholar 

  • Jha CK, Patel B, Saraf M (2012) Stimulation of the growth of Jatropha curcas by the plant growth promoting bacterium Enterobacter cancerogenus MSA2. World J Microbiol Biotechnol 28:891–899

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Sheng X, Qian M, Wang Q (2008) Isolation and characterization of a heavy metal resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157–164

    Article  CAS  PubMed  Google Scholar 

  • Jikare AM, Chavan MD (2013) Siderophore produced by Bacillus shackletonii GN-09 and its plant growth promoting activity. IJPBS 3:198–202

    Google Scholar 

  • Joo GJ, Kim YM, Kim JT (2005) Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43:510–515

    CAS  PubMed  Google Scholar 

  • Kalloo G (1991) Introduction. In: Kalloo G (ed) Monographs on theoretical and applied genetics 14. Genetic improvement of tomato. Springer-Verlag, Berlin, pp 1–9

    Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova A, Makarova N, Lugtenberg B (2006) Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stone wool and their effects on activities of rhizosphere bacteria. Mol Plant-Microbe Interact 19:250–256

    Article  CAS  PubMed  Google Scholar 

  • Kasa P, Modugapalem H, Battini K (2015) Isolation, screening, and molecular characterization of plant growth promoting rhizobacteria isolates of Azotobacter and Trichoderma and their beneficial activities. J Nat Sci Biol Med 6:360–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khaliq S, Khalid A, Saba B, Mahmood S, Siddique MT, Aziz I (2013) Effect of ACC deaminase bacteria on tomato plants containing azo dye wastewater. Pak J Bot 45:529–534

    Google Scholar 

  • Khan AL, Waqas M, Kang S, Al-Harrasi A, Hussain J, Al-Rawahi A, Al-Khiziri S, Ullah I, Ali L, Jung H, Lee I (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol. doi:10.1007/s12275-014-4002-7

    PubMed  Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi-current perspective. Arch Agron Soil Sci 56:73–98

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  CAS  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Station de Pathologie (ed) Proceedings of the 4th international conference on plant pathogenic bacteria, Végétale et Phyto-Bactériologie, pp 879–882

    Google Scholar 

  • Kloepper JW, Schroth MN (1981) Relationship of in vitro antibiosis of plant growth promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology 71:1020–1024

    Article  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kloepper JW, Zablotowick RM, Tipping EM, Lifshitz R (1991) Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, Dordrecht, Netherlands, pp 315–326

    Google Scholar 

  • Kumar A, Bagewadi A, Keluskar V, Singh M (2007) Efficacy of lycopene in the management of oral submucous fibrosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103:207–213

    Article  PubMed  Google Scholar 

  • Lachisa L, Dabassa A (2015) Synergetic effect of rhizosphere bacteria isolates and composted manure on fusarium wilt disease of tomato plants. Res J Microbiol 11:20–27

    Google Scholar 

  • Lambrecht M, Okon Y, Broek AV, Vanderleyden J (2000) Indole-3-acetic acid: a reciprocal signaling molecule in bacteria plant interactions. Trends Microbiol 8:298–300

    Article  CAS  PubMed  Google Scholar 

  • Lanteigne C, Gadkar VJ, Wallon T, Novinscak A, Filion M (2012) Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Phytopathology 102:967–973

    Article  CAS  PubMed  Google Scholar 

  • Leclere V, Bechet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KH, Koh RH, Song HG (2008) Enhancement of growth and yield of tomato by Rhodopseudomonas sp. under green house conditions. J Microbiol 46:641–646

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Dai M, Wu X, Li M, Liu X (2012) Suppression of the root-knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] on tomato by dual inoculation with arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria. Mycorrhiza 22:289–296

    Article  PubMed  Google Scholar 

  • Livny O, Kaplan I, Reifen R, Charcon SP, Madat Z, Schwartz B (2002) Lycopene inhibits proliferation and enhances gap junction communication of KB-1 human oral tumor cells. J Nutr 132:3754–3759

    CAS  PubMed  Google Scholar 

  • Loganathan MR, Garg V, Saha VS, Rai AB (2014) Plant growth promoting rhizobacteria (PGPR) induces resistance against Fusarium wilt and improves lycopene content and texture in tomato. Afr J Microbiol Res 8:1105–1111

    Article  CAS  Google Scholar 

  • Lugtenberg B, Chin-A-Woeng T, Bloemberg G (2002) Microbe–plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek 81:373–383

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJ, Kravchenko LV, Simons M (1999) Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ Microbiol 1:439–446

    Article  CAS  PubMed  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch JM (1987) The rhizosphere. Wiley Interscience, Chichester, UK

    Google Scholar 

  • Majeed A, Abbasi MK, Hameed S, Imran A, Rahim N (2015) Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front Microbiol 6:198

    Article  PubMed  PubMed Central  Google Scholar 

  • Manzanera M, Narváez-Reinaldo JJ, García-Fontana C, Vílchez JI, González-López J (2015) Genome sequence of Arthrobacter koreensis 5J12A, a plant growth promoting and desiccation-tolerant strain. Genome Announc 3(3):e00648-15. doi:10.1128/genomeA.00648-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Mariutto M, Duby F, Adam A, Bureau C, Fauconnier M, Ongena M, Thonart P, Dommes J (2011) The elicitation of a systemic resistance by Pseudomonas putida BTP1 in tomato involves the stimulation of two lipoxygenase isoforms. BMC Plant Biol 11:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meena G, Borkar SG, Nisha ML (2015) Population dynamics of plant growth promoting microbes on root surface and rhizosphere of tomato crop and their beneficial effect as bioinoculants on tomato and chilli crop. Int J Adv Res 3:990–996

    Google Scholar 

  • Mehnaz S (2013) Secondary metabolites of Pseudomonas aurantiaca and their role in plant growth promotion. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, India, pp 373–394

    Chapter  Google Scholar 

  • Murthy KN, Uzma F, Chitrashree SC (2014) Induction of systemic resistance in tomato against Ralstonia solanacearum by Pseudomonas fluorescens. Am J Plant Sci 5:1799–1811

    Article  Google Scholar 

  • Myresiotis CK, Karaoglanidis GS, Vryzas Z, Papadopoulou-Mourkidou E (2012) Evaluation of plant-growth-promoting rhizobacteria, acibenzolar-S-methyl and hymexazol for integrated control of Fusarium crown and root rot on tomato. Pest Manage Sci 68:404–411

    Article  CAS  Google Scholar 

  • Neal AL, Ahmad S, Gordon-Weeks R, Ton J (2012) Benzoxazinoids in root exudates of maize attracts Pseudomonas putida to the rhizosphere. PLoS One 7(4):e35498. doi:10.1371/journal.pone.0035498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngoma L, Esau B, Babalola OO (2013) Isolation and characterization of beneficial indigenous endophytic bacteria for plant growth promoting activity in Molelwane Farm Mafikeng, South Africa. Afr J Biotechnol 12:4105–4114

    CAS  Google Scholar 

  • Nzanza B, Marais D, Soundy P (2012) Yield and nutrient content of tomato (Solanum lycopersicum L.) as influenced by Trichoderma harzianum and Glomus mosseae inoculation. Sci Hortic 144:55–59

    Article  CAS  Google Scholar 

  • Odriozola-Serrano I, Soliva-Fortuny R, Hernandez-Jover T, Martin-Belloso O (2009) Carotenoid and phenolics profile of tomato juices processed by high intensity pulse electric fields compared with conventional thermal treatments. Food Chem 112:258–266

    Article  CAS  Google Scholar 

  • Oldroyd GED (2007) Nodules and hormones. Science 315(5808):52–53

    Article  CAS  PubMed  Google Scholar 

  • Ordookhani K, Zare M (2011) Effect of Pseudomonas, Azotobacter and Arbuscular Mycorrhiza Fungi on lycopene, antioxidant activity and total soluble solid in tomato (Lycopersicon esculentum F1 Hybrid, Delba). Adv Environ Biol 5:1290–1294

    Google Scholar 

  • Ordookhani K, Khavazi K, Moezzi A, Rejali F (2010) Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato. Afr J Agric Res 5:1108–1116

    Google Scholar 

  • Pandey SK, Chandra KK (2013) Impact of integrated nutrient management on tomato yield under farmers field conditions. J Environ Biol 34:1047–1051

    CAS  PubMed  Google Scholar 

  • Pandya ND, Desai PV (2014) Screening and characterization of GA3 producing Pseudomonas monteilii and its impact on plant growth promotion. Int J Curr Microbiol Appl Sci 3:110–115

    CAS  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  CAS  PubMed  Google Scholar 

  • Peralta IE, Spooner DM (2007) History, origin and early cultivation of tomato (Solanaceae). In: Razdan MK, Mattoo AK (ed) Genetic improvement of solanaceous crops, Vol 2: Tomato, Science Publishers, New Hampshire, USA, p 1–24

    Google Scholar 

  • Porcel R, Zamarreño ÁM, García-Mina JM, Aroca R (2014) Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biol 14:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prashar P, Kapoor N, Sachdeva S (2014) Plant growth promoting activities of rhizobacteria associated with tomato in semi-arid region. Adv Life Sci Health 1:1

    Google Scholar 

  • Puertas A, Gonzales LM (1999) Aislamiento de cepasnativas de Azotobacter chroococcum en la provincial Granmayevaluacion de suactividadestimuladora en plantulas de tomate. Cell Mol Life Sci 20:5–7

    Google Scholar 

  • Radzki W, Manero FJG, Algar E (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek 104:321–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sayyed RZ, Chincholkar SB, Reddy MS, Gangurde NS, Patel PR (2013) Siderophore producing PGPR for crop nutrition and phytopathogen suppression. In: Maheshwari DK (ed) Bacteria in agrobiology: disease management. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Schuhegger R, Ihring A, Gantner S, Knappe GBC, Vogg G, Hutzler P, Schmid M, Eberl FVBL, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato by N-acyl-L homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2008) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar GR, Reetha R, Thamizhiniyan P (2013) The PGPR as elicitors of plant defence mechanisms and growth stimulants on tomato (Lycopersicum esculentum Mill.) Bot Res Int 6:47–55

    CAS  Google Scholar 

  • Seneviratne M, Gunaratne S, Bandara T, Weerasundara L, Rajakaruna N, Seneviratne G, Vithanage M (2016) Plant growth promotion by Bradyrhizobium japonicum under heavy metal stress. South Afr J Bot 105:19–24

    Article  CAS  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen M, Jun Kang Y, Li Wang H, Sheng Zhang X, Xin Zhao Q (2012) Effect of plant growth-promoting rhizobacteria (PGPRs) on plant growth, yield, and quality of tomato (Lycopersicon esculentum Mill.) under simulated seawater irrigation. J Gen Appl Microbiol 58:253–262

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Le Maguer M (2000) Lycopene in tomatoes: chemical and physical properties affected by food processing. Crit Rev Food Sci Nutr 40:1–42

    Article  CAS  PubMed  Google Scholar 

  • Shishido M, Chanway CP (1998) Storage effects on indigenous soil microbial communities and PGPR efficacy. Soil Biol Biochem 30:939–947

    Article  CAS  Google Scholar 

  • Siddikee MA, Chauhan PS, Anandham R, Han GH, Sa T (2010) Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase producing halo tolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20:1577–1584

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui ZA, Futai K (2009) Biocontrol of Meloidogyne incognita on tomato using antagonistic fungi, plant-growth-promoting rhizobacteria and cattle manure. Pest Manage Sci 65:943–948

    Article  CAS  Google Scholar 

  • Simons M, Permentier HP, de Weger LA, Wijffelman CA, Lugtenberg BJJ (1997) Amino acid sysnthesis is necessary for tomato root colonization by Pseudomonas fluorescens strain WCS365. Mol Plant-Microbe Interact 10:102–106

    Article  CAS  Google Scholar 

  • Singh SP, Singh HB, Singh DK (2013) Trichoderma harzianum and Pseudomonas sp. mediated management of Sclerotium rolfsii rot in tomato (Lycopersicon esculentum Mill.) Bioscan 8:801–804

    Google Scholar 

  • Singh D, Yadav DK, Chaudhary G, Rana VS, Sharma RK (2016) Potential of Bacillus amyloliquefaciens for biocontrol of bacterial wilt of tomato incited by Ralstonia solanacearum. J Plant Pathol Microbiol 7:327

    Article  Google Scholar 

  • Sivasakthi S, Kanchana D, Usharani G, Saranraj P (2013) Production of plant growth promoting substance by Pseudomonas fluorescens and Bacillus subtilis isolates from paddy rhizosphere soil of Cuddalore district Tamil Nadu, India. Int J Microbiol Res 4:227–233

    CAS  Google Scholar 

  • Sokolova MG, Akimova GP, Vaishlia OB (2011) Effect of phytohormones synthesized by rhizosphere bacteria on plants. Prikl Biokhim Mikrobiol 47:302–307

    CAS  PubMed  Google Scholar 

  • Son J, Sumayo M, Hwang Y, Kim B, Ghim S (2014) Screening of plant growth-promoting rhizobacteria as elicitor of systemic resistance against gray leaf spot disease in pepper. Appl Soil Ecol 73:1–8

    Article  Google Scholar 

  • Srivastava LM (2002) Plant growth and development: hormones and environment. Academic Press, San Diego, CA

    Google Scholar 

  • Súarez MH, Rodriguez EMR, Romero CD (2008) Chemical composition of tomato (Lycopersicon esculentum) from Tenerife, the Canary Islands. Food Chem 106:1046–1056

    Article  CAS  Google Scholar 

  • Sulochana MB, Jayachandra SY, Kumar SA, Parameshwar AB, Reddy KM, Dayanand A (2014) Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25. Appl Biochem Biotechnol 174:297–308

    Article  CAS  PubMed  Google Scholar 

  • Talboys PJ, Owen DW, Healey JR, Withers PJA, Jones DL (2014) Auxin secretion by Bacillus amyloliquefaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivum. BMC Plant Biol 14:51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tallapragada P, Dikshit R, Seshagir S (2015) Isolation and optimization of IAA producing Burkholderia seminalis and its effect on seedlings of tomato. Songklanakarin J Sci Technol 37:553–559

    CAS  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signaling, transport and the control of plant growth and development. Mol Cell Biol 7:847–859

    CAS  Google Scholar 

  • Thamer S, Schädler M, Bonte D (2011) Dual benefit from a belowground symbiosis: nitrogen fixing rhizobia promote growth and defense against a specialist herbivore in a cyanogenic plant. Plant Soil 341:209–219

    Article  CAS  Google Scholar 

  • Thompson KA, Marshall MR, Sims CA, Wei CI, Sargent SA, Scott JW (2000) Cultivar, maturity and heat treatment on lycopene content in tomatoes. J Food Sci 65:791–795

    Article  CAS  Google Scholar 

  • Tran H, Ficke A, Asiimwe T, Höfte M, Raaijmakers JM (2007) Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol. doi:10.1111/j.1469-8137.2007.02138.x

    PubMed  Google Scholar 

  • Turan M, Ekinci M, Yildirim E, Günes A, Karagöz K, Kotan R, Dursun A (2014) Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turk J Agric For 38:327–333

    Article  CAS  Google Scholar 

  • Turner TR, Ramakrishnan K, Walshaw J, Heavens D, Alston M, Swarbreck D, Osbourn A, Grant A, Poole PS (2013) Comparative meta transcriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J 7:2248–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaikuntapu PR, Dutta S, Samudrala RB, Rao VRVN, Kalam S, Podile AR (2014) Preferential promotion of Lycopersicon esculentum (Tomato) growth by plant growth promoting bacteria associated with tomato. Indian J Microbiol 54:403–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner T, Motyka V, Strnad M, Schmulling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci U S A 98:10487–11049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Smith MD, Glick BR, Liang Y (2014) Effects of ACC deaminase containing rhizobacteria on plant growth and expression of Toc GTPases in tomato (Solanum lycopersicum) under salt stress. Botany 92:775–781

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ahmed, B., Zaidi, A., Khan, M.S., Rizvi, A., Saif, S., Shahid, M. (2017). Perspectives of Plant Growth Promoting Rhizobacteria in Growth Enhancement and Sustainable Production of Tomato. In: Zaidi, A., Khan, M. (eds) Microbial Strategies for Vegetable Production. Springer, Cham. https://doi.org/10.1007/978-3-319-54401-4_6

Download citation

Publish with us

Policies and ethics