Plant Growth-Promoting Bacteria: Importance in Vegetable Production



A large number of soil bacteria are able to colonize the surface/interior of root system and stimulate plant growth and health. This group of bacteria, generally referred to as plant growth-promoting rhizobacteria (PGPR), enhances the growth of plants including vegetables in both conventional and stressed soil. In addition, many PGPR facilitate crop production indirectly by inhibiting various phytopathogens. Conclusively, PGPR affects plant growth via nitrogen fixation, phosphate solubilization and mineral uptake, siderophore production, antibiosis, and hydrolytic enzymes synthesis. Some of the notable PGPR capable of facilitating the growth of a varied range of vegetables such as potato, carrot, onion, etc. belong to genera Azotobacter, Azospirillum, Pseudomonas, and Bacillus. Vegetables play a major role in providing essential minerals, vitamins, and fiber, which are not present in significant quantities in staple starchy foods. Hence, to optimize vegetable production without chemical inputs, the use of PGPR in vegetable cultivation is recommended. Here, an attempt is made to highlight the role of PGPR in vegetable production under both normal and derelict soils.


Plant growth-promoting rhizobacteria Vegetables Induced systemic resistance Induced systemic tolerance 


  1. Abd-Alla MH (1998) Growth and siderophore production in vitro of Bradyrhizobium (Lupin) strains under iron limitation. Eur J Soil Biol 34:99–104CrossRefGoogle Scholar
  2. Akiyoshi DA, Regier DA, Gordon MP (1987) Cytokinin production by Agrobacterium and Pseudomonas spp. J Bacteriol 169:4242–4248PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167PubMedCrossRefGoogle Scholar
  4. Antoun H, Prévost D (2005) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Netherlands, pp 1–38Google Scholar
  5. Ardisson GB, Tosin M, Barbale M, Degli-Innocenti F (2014) Biodegradation of plastics in soil and effects on nitrification activity. A laboratory approach. Front Microbiol. doi: 10.3389/fmicb.2014.00710 Google Scholar
  6. Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315CrossRefGoogle Scholar
  7. Arkhipova TN, Veselov SU, Melentiev AI, Martynenko EV, Kudoyarova GR (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272:201–209CrossRefGoogle Scholar
  8. Ashraf M, Ahmad MSA, Öztürk M, Aksoy A (2012) Crop improvement through different means: challenges and prospects. In: Ashraf M et al (eds) Crop production for agricultural improvement. Springer Science + Business Media BV, Dordrecht, Netherlands, pp 1–15CrossRefGoogle Scholar
  9. Avinash TS, Rai RV (2014) Antifungal activity of plant growth promoting rhizobacteria against Fusarium oxysporum and Phoma sp. of cucurbitaceae. In: Kharwar RN et al (eds) Microbial diversity and biotechnology in food security. Springer, India, pp 257–264Google Scholar
  10. Bahena MHR, Salazar S, Velázquez E, Laguerre G, Peix A (2015) Characterization of phosphate solubilizing rhizobacteria associated with pea (Pisum sativum L.) isolated from two agricultural soils. Symbiosis 67:33–41CrossRefGoogle Scholar
  11. Bakker PAHM, Lamers JG, Bakker AW, Marugg JD, Weisbeek PJ, Schippers B (1986) The role of siderophores in potato tuber yield increase by Pseudomonas putida in a short rotation of potato. Neth J Plant Pathol 92:249–256CrossRefGoogle Scholar
  12. Bakshi A, Shemansky JM, Chang C, Binder BM (2015) History of research on the plant hormone ethylene. J Plant Growth Regul 34:809–827CrossRefGoogle Scholar
  13. Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobrero MT (2006) Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci Hortic 109:8–14CrossRefGoogle Scholar
  14. Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488PubMedCrossRefGoogle Scholar
  15. Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2012) 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation. Plant Physiol Biochem 58:227–235PubMedCrossRefGoogle Scholar
  16. Bar-Ness E, Hadar Y, Chen Y, Shanzer A, Libman J (1992) Iron uptake by plants from microbial siderophores. Plant Physiol 99:1329–1335PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bastian F, Cohen A, Piccoli P, Luna V, Baraldi R, Bottini R (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically defined media. Plant Growth Regul 24:7–11CrossRefGoogle Scholar
  18. Belimov AA, Dodd IC, Safronova VI, Shaposhnikov AI, Azarova TS, Makarova NM, Davies WJ, Tikhonovich IA (2015) Rhizobacteria that produce auxins and contain 1 amino-cyclopropane-1-carboxylic acid deaminase decrease amino acid concentrations in the rhizosphere and improve growth and yield of well-watered and water-limited potato (Solanum tuberosum). Ann Appl Biol 167:11–25CrossRefGoogle Scholar
  19. Ben Abdallah RA, Mokni-Tlili S, Nefzi A, Jabnoun-Khiareddine H, Daami-Remadi M (2016) Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biol Control 97:80–88CrossRefGoogle Scholar
  20. Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bensalim S, Nowak J, Asiedu SK (1998) A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75:145–152CrossRefGoogle Scholar
  22. Bertrand JC, Bonin P, Caumette P, Gattuso JP, Grégori G, Guyoneaud R, Le Roux X, Matheron R, Poly F (2015) Biogeochemical cycles. In: Bertrand JC et al (eds) Environmental microbiology: fundamentals and applications: microbial ecology. Springer Science + Business Media, Dordrecht, pp 511–617Google Scholar
  23. Beyeler M, Keel C, Michaux P, Haas D (1999) Enhanced production of indole-3-acetic acid by a genetically modified strain of Pseudomonas fluorescens CHA0 affects root growth of cucumber, but does not improve protection of the plant against Pythium root rot. FEMS Microbiol Ecol 28:225–233CrossRefGoogle Scholar
  24. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350PubMedCrossRefGoogle Scholar
  25. Bottini R, Fulchieri M, Pearce D, Pharis RP (1989) Identification of gibberellins A1, A3, and iso-A3 in cultures of Azospirillum lipoferum. Plant Physiol 90:45–47PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cassán F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33:440–459CrossRefGoogle Scholar
  27. Choudhary DK, Varma A (2016) Microbial-mediated induced systemic resistance in plants. Springer Science +Business Media, SingaporeCrossRefGoogle Scholar
  28. Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974CrossRefGoogle Scholar
  29. Cohen MF, Mazzola M (2006) Resident bacteria, nitric oxide emission and particle size modulate the effect of Brassica napus seed meal on disease incited by Rhizoctonia solani and Pythium spp. Plant Soil 286:75–86CrossRefGoogle Scholar
  30. Cohen MF, Lamattina L, Yamasaki H (2010) Nitric oxide signaling by plant-associated bacteria. In: Hayat S et al (eds) Nitric oxide in plant physiology. WILEY-VCH Verlag GmbH and Co. KGaA, WeinheimGoogle Scholar
  31. Conard K, Bettin D, Neumann S (1992) The cytokinin production of Azospirillum and Klebsiella and its possible ecological effects. In: Kamínek M et al (eds) Physiology and biochemistry of cytokinins in plants: Proc Intern Symp Physiol Biochem of cytokinins in plants. SPB Academic Publishing BV, The Hague, Netherlands, pp 401–405Google Scholar
  32. Crespo J, Boiardi J, Luna M (2011) Mineral phosphate solubilization activity of gluconacetobacter diazotrophicus under P-limitation and plant root environment. Agric Sci 2:16–22Google Scholar
  33. Cronin D, Moenne-Loccoz Y, Dunne C, O’Gara F (1997) Inhibition of egg hatch of the potato cyst nematode Globodera rostochiensis by chitinase-producing bacteria. Eur J Plant Pathol 103:433–440CrossRefGoogle Scholar
  34. Dashti N, Zhang F, Hynes R, Smith DL (1998) Plant growth promoting rhizobacteria accelerates nodulation and increase nitrogen fixation activity by field grown soybean [Glycine max (L.) Merr.] under short season conditions. Plant Soil 200:205–213CrossRefGoogle Scholar
  35. Datta B, Chakrabartty PK (2014) Siderophore biosynthesis genes of Rhizobium sp. isolated from Cicer arietinum L. 3 Biotech 4:391–401PubMedCrossRefGoogle Scholar
  36. Di DW, Zhang C, Luo P, An CW, Guo GQ (2016) The biosynthesis of auxin: how many paths truly lead to IAA? Plant Growth Regul 78:275–285CrossRefGoogle Scholar
  37. Donderski W, Głuchowska M (2000) Production of cytokinin-like substances by planktonic bacteria isolated from lake Jeziorak. Pol J Environ Stud 9:369–376Google Scholar
  38. Egamberdieva D, Lugtenberg B (2014) Use of plant growth-promoting rhizobacteria to alleviate salinity stress in plants. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer Science + Business Media, New York, pp 73–96CrossRefGoogle Scholar
  39. Elmerich C (2007) Historical perspective: from bacterization to endophytes. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen-fixing bacteria and Cyanobacterial associations. Springer, The Netherlands, pp 1–16CrossRefGoogle Scholar
  40. Endo A, Okamoto M, Koshiba T (2014) ABA biosynthetic and catabolic pathways. In: Zhang DP (ed) Abscisic acid: metabolism, transport and signaling. Springer Science + Business Media, Dordrecht, pp 21–46Google Scholar
  41. Etesami H, Alikhani HA, Hosseini HM (2015) Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX 2:72–78PubMedPubMedCentralCrossRefGoogle Scholar
  42. Fekete FA, Spence JT, Emery T (1983) Siderophores produced by nitrogen-fixing Azotobacter vinelandii OP in iron-limited continuous culture. Appl Environ Microbiol 46:1297–1300PubMedPubMedCentralGoogle Scholar
  43. Figueiredo MVB, Bonifacio A, Rodrigues AC, Araujo FF (2016) Plant growth-promoting rhizobacteria: key mechanisms of action. In: Choudhary DK, Varma A (eds) Microbial-mediated induced systemic resistance in plants. Springer Science + Business Media, Singapore, pp 23–37CrossRefGoogle Scholar
  44. Fresco LO, Baudoin WO (2002) Food and nutrition security towards human security. In: ICV souvenir paper. International Conference on Vegetables, World Food Summit: five years later, 11–13 June 2002, Rome, ItalyGoogle Scholar
  45. Fukuyama K (2004) Structure and function of plant-type ferredoxins. Photosynth Res 81:289–230PubMedCrossRefGoogle Scholar
  46. Gao Y, Zhao Y (2014) Auxin biosynthesis and catabolism. In: Zažímalová E et al (eds) Auxin and its role in plant development. Springer-Verlag, Vienna, pp 21–38CrossRefGoogle Scholar
  47. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39PubMedCrossRefGoogle Scholar
  48. Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339CrossRefGoogle Scholar
  49. Gomez-Cadenas A, Vives V, Zandalinas SI, Manzi M, Sanchez-Perez AM, Perez-Clemente RM, Arbona V (2015) Abscisic acid: a versatile phytohormone in plant signaling and beyond. Curr Protein Pept Sci 16:413–434PubMedCrossRefGoogle Scholar
  50. Gravel V, Antoun H, Tweddell RJ (2007) Effect of indole-acetic acid (IAA) on the development of symptoms caused by Pythium ultimum on tomato plants. Eur J Plant Pathol 119:457–462CrossRefGoogle Scholar
  51. Gray EJ, Smith DL (2004) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37:395–412CrossRefGoogle Scholar
  52. Gupta A, Gupal M, Tilak KVBR (2000) Mechanism of plant growth promotion by rhizobacteria. Indian J Exp Biol 38:856–862PubMedGoogle Scholar
  53. Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:096–102Google Scholar
  54. Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ros-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32:245–258CrossRefGoogle Scholar
  55. Hao Y, Charles TC, Glick BR (2010) ACC deaminase increases the Agrobacterium tumefaciens-mediated transformation of commercial canola cultivars. FEMS Microbiol Lett 307:185–190PubMedCrossRefGoogle Scholar
  56. Hider RC, Kong X (2010) Chemistry and biology of siderophores. Royal Soc Chem 27:637–657Google Scholar
  57. Hofstra N, Bouwman AF (2005) Denitrification in agricultural soils: summarizing published data and estimating global annual rates. Nutr Cycl Agroecosyst 72:267–278CrossRefGoogle Scholar
  58. Höfte M, Bakker PAHM (2007) Competition for iron and induced systemic resistance by siderophores of plant growth promoting rhizobacteria. In: Varma A, Chincholkar SB (eds) Soil biology, vol. 12. Microbial siderophore. Springer-Verlag, Berlin Heidelberg, pp 121–133CrossRefGoogle Scholar
  59. Husen E, Wahyudi AT, Suwanto A, Giyanto (2011) Growth enhancement and disease reduction of soybean by 1-aminocyclopropane-1-carboxylate deaminase-producing pseudomonas. Am J Appl Sci 8:1073–1080CrossRefGoogle Scholar
  60. Hussain A, Hasnain S (2009) Cytokinin production by some bacteria: its impact on cell division in cucumber cotyledons. Afr J Microbiol Res 3:704–712Google Scholar
  61. Idso CD (2011) Estimates of global food production in the year 2050: will we produce enough to adequately feed the world? Center for the Study of Carbon Dioxide and Global Change. www.co2science.orgGoogle Scholar
  62. Jagadeesh KS, Kulkarni JH, Krishnaraj PU (2001) Evaluation of the role of fluorescent siderophore in the biological control of bacterial wilt in tomato using Tn5 mutants of fluorescent Pseudomonas sp. Curr Sci 81:882–883Google Scholar
  63. Janzen R, Rood S, Dormar J, McGill W (1992) Azospirillum brasilense produces gibberellins in pure culture and chemically-medium and in co-culture on straw. Soil Biol Biochem 24:1061–1064CrossRefGoogle Scholar
  64. Joo GJ, Kang SM, Hamayun M, Kim SK, Na CI, Shin DH, Lee IJ (2009) Burkholderia sp. KCTC 11096BP as newly isolated gibberellin producing bacterium. J Microbiol 47:167–171PubMedCrossRefGoogle Scholar
  65. Joo GJ, Kim YM, Kim JT, Rhee IK, Kim JH, Lee IJ (2005) Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43:510–515PubMedGoogle Scholar
  66. Joo GJ, Kim YM, Lee IJ, Song KS, Rhee IK (2004) Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnol Lett 26:487–491PubMedCrossRefGoogle Scholar
  67. Kämpfer P, Ruppel S, Remus R (2005) Enterobacter radicincitans sp. nov., a plant growth promoting species of the family Enterobacteriaceae. Syst Appl Microbiol 28:213–221PubMedCrossRefGoogle Scholar
  68. Kang SM, Joo GJ, Hamayun M, Na CI, Shin DH, Kim HY, Hong JK, Lee IJ (2009) Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol Lett 31:277–281PubMedCrossRefGoogle Scholar
  69. Kang SM, Khan AL, Hamayun M, Hussain J, Joo GJ, You YH, Kim JG, Lee IJ (2012) Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones. J Microbiol 50:902–909PubMedCrossRefGoogle Scholar
  70. Kang SM, Waqas M, Khan AL, Lee IJ (2014) Plant-growth-promoting rhizobacteria: potential candidates for gibberellins production and crop growth promotion. In: Miransari M et al (eds) Use of microbes for the alleviation of soil stresses, vol 1. Springer Science + Business Media, New York, pp 1–19CrossRefGoogle Scholar
  71. Kannahi M, Senbagam N (2014) Studies on siderophore production by microbial isolates obtained from rhizosphere soil and its antibacterial activity. J Chem Pharm Res 6:1142–1145Google Scholar
  72. Karadeniz A, Topcuoğlu SF, İnan S (2006) Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J Microbiol Biotechnol 22:1061–1064CrossRefGoogle Scholar
  73. Kathiresan K, Saravanakumar K, Anburaj R, Gomathi V, Abirami G, Sahu SK, Anandhan S (2011) Microbial enzyme activity in decomposing leaves of mangroves. Int J Adv Biotechnol Res 2:382–389Google Scholar
  74. Kende H, Zeevaart JAD (1997) The five “classical” plant hormones. Plant Cell 9:1197–1210PubMedPubMedCentralCrossRefGoogle Scholar
  75. Khan AL, Halo BA, Elyassi A, Ali S, Al-Hosni K, Hussain J, Al-Harrasi A, Lee IJ (2016) Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron J Biotechnol 21:58–64CrossRefGoogle Scholar
  76. Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1:48–58Google Scholar
  77. Khan AL, Waqas M, Kang SM, Al-Harrasi A, Hussain J, Al-Rawahi A, Al-Khiziri S, Ullah I, Ali L, Jung HY, Lee IJ (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and iaa and promotes tomato plant growth. J Microbiol 52:689–695PubMedCrossRefGoogle Scholar
  78. Khan MS, Zaidi A, Ahmad E (2014) Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In: Khan MS et al (eds) Phosphate solubilizing microorganisms. Springer International Publishing, Switzerland, pp 31–62Google Scholar
  79. Kiseleva AA, Tarachovskaya ER, Shishova MF (2012) Biosynthesis of phytohormones in algae. Russ J Plant Physiol 59:595–610CrossRefGoogle Scholar
  80. Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria, vol 2. Station de Pathologie Végétale et de Phytobactériologie, INRA, Angers, France, pp 879–882Google Scholar
  81. Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886CrossRefGoogle Scholar
  82. Knowles R (2004) Nitrogen cycle. In: Schaechter M (ed) The desk encyclopedia of microbiology. Elsevier, China, pp 690–701Google Scholar
  83. Kohler J, Caravaca F, Carrasco L, Roldán A (2007) Interactions between a plant growth-promoting rhizobacterium, an AM fungus and a phosphate-solubilising fungus in the rhizosphere of Lactuca sativa. Appl Soil Ecol 35:480–487CrossRefGoogle Scholar
  84. Konappa NM, Maria M, Uzma F, Krishnamurthy S, Nayaka SC, Niranjana SR, Chowdappa S (2016) Lactic acid bacteria mediated induction of defense enzymes to enhance the resistance in tomato against Ralstonia solanacearum causing bacterial wilt. Sci Hortic 207:183–192CrossRefGoogle Scholar
  85. Krishnaraj PU, Dahale S (2014) Mineral phosphate solubilization: concepts and prospects in sustainable agriculture. Proc Indian Natl Sci Acad 80:389–405CrossRefGoogle Scholar
  86. Kumar NR, Krishnan M, Kandeepan C, Kayalvizhi N (2014) Molecular and functional diversity of PGPR fluorescent Pseudomonas isolated from rhizosphere of rice (Oryza sativa L.) Int J Adv Biotechnol Res 5:490–505Google Scholar
  87. Kümmerli R, Schiessl KT, Waldvogel T, McNeill K, Ackermann M (2014) Habitat structure and the evolution of diffusible siderophores in bacteria. Ecol Lett 17:1536–1544PubMedCrossRefGoogle Scholar
  88. Landa BB, Montes-Borrego M, Navas-Cortés JA (2013) Use of PGPR for controlling soilborne fungal pathogens: assessing the factors influencing its efficacy. In: Maheshwari DK (ed) Bacteria in agrobiology: disease management. Springer-Verlag, Berlin Heidelberg, pp 259–292CrossRefGoogle Scholar
  89. Laslo E, György E, Mathé I, Mara G, Tamas E, Abraham B, Lanyi S (2011) Replacement of the traditional fertilizer with microbial technology: isolation and characterization of beneficial nitrogen fixing rhizobacteria. U P B Sci Bull 73:109–114Google Scholar
  90. Lee SW, Lee SH, Balaraju K, Park KS, Nam KW, Park JW, Park K (2014) Growth promotion and induced disease suppression of four vegetable crops by a selected plant growth-promoting rhizobacteria (PGPR) strain Bacillus subtilis 21-1 under two different soil conditions. Acta Physiol Plant 36:1353–1362CrossRefGoogle Scholar
  91. Leyval C, Berthelin J (1989) Interaction between Laccaria laccata, Agrobacterium agrobacter and beech roots: influence on P, K, Mg and Fe mobilization from minerals and plant growth. Plant Soil 117:103–110CrossRefGoogle Scholar
  92. Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y (2014) Metalloproteins containing cytochrome, iron–sulfur, or copper redox centers. Chem Rev 114:4366–4469PubMedPubMedCentralCrossRefGoogle Scholar
  93. Lombardo MC, Graziano M, Polacco JC, Lamattina L (2006) Nitric oxide functions as a positive regulator of root hair development. Plant Signal Behav 1:28–33PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556PubMedCrossRefGoogle Scholar
  95. Ma B, Chen H, Chen SY, Zhang JS (2014) Roles of ethylene in plant growth and responses to stresses. In: Tran LSP, Pal S (eds) Phytohormones: a window to metabolism, signaling and biotechnological applications. Springer Science + Business Media, New York, pp 81–118CrossRefGoogle Scholar
  96. Ma Y, Rajkumar M, Freitas H (2009) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manage 90:831–837PubMedCrossRefGoogle Scholar
  97. MacMillan J, Suter PJ (1958) The occurrence of gibberellin A1 in higher plants: isolation from the seed of runner bean (Phaseolus multiflorus). Naturwissenschaften 45:46–64CrossRefGoogle Scholar
  98. Maheshwari DK, Dheeman S, Agarwal M (2015) Phytohormone-producing PGPR for sustainable agriculture. In: Maheshwari DK (ed) Bacterial metabolites in sustainable agroecosystem, sustainable development and biodiversity, vol 12. Springer International Publishing, Switzerland, pp 159–182CrossRefGoogle Scholar
  99. Malboobi MA, Behbahani M, Madani H, Owlia P, Deljou A, Yakhchali B, Moradi M, Hassanabadi H (2009) Performance evaluation of potent phosphate solubilizing bacteria in potato rhizosphere. World J Microbiol Biotechnol 25:1479–1484CrossRefGoogle Scholar
  100. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572PubMedCrossRefGoogle Scholar
  101. Miao G, Jian-jiao Z, En-tao W, Qian C, Jing X, Jian-guang S (2014) Multiphasic characterization of a plant growth promoting bacterial strain, Burkholderia sp. 7016 and its effect on tomato growth in the field. J Integr Agric 14:1855–1863Google Scholar
  102. Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451PubMedPubMedCentralCrossRefGoogle Scholar
  103. Moradi H, Bahramnejad B, Amini J, Siosemardeh A, Haji-Allahverdipoor K (2012) Suppression of chickpea (Cicer arietinum L.) Fusarium wilt by Bacillus subtilis and Trichoderma harzianum. POJ 5(2):68–74Google Scholar
  104. Morrone D, Chambers J, Lowry L, Kim G, Anterola A, Bender K, Peters RJ (2009) Gibberellin biosynthesis in bacteria: separate ent-copalyl diphosphate and ent-kaurene synthases in Bradyrhizobium japonicum. FEBS Lett 583:475–480PubMedCrossRefGoogle Scholar
  105. Muriel C, Jalvo B, Redondo-Nieto M, Rivilla R, Martín M (2015) Chemotactic motility of Pseudomonas fluorescens F113 under aerobic and denitrification conditions. PLoS ONE 10(7):e0132242PubMedPubMedCentralCrossRefGoogle Scholar
  106. Murthy KN, Uzma F, Chitrashree, Srinivas C (2014) Induction of systemic resistance in tomato against Ralstonia solanacearum by Pseudomonas fluorescens. AJPS 5:1799–1811CrossRefGoogle Scholar
  107. Nadeem SM, Naveed M, Ahmad M, Zahir ZA (2015) Rhizosphere bacteria for crop production and improvement of stress tolerance: mechanisms of action, applications, and future prospects. In: Arora NK (ed) Plant microbes symbiosis: applied facets, vol 1. Springer, India, pp 1–36Google Scholar
  108. Naqqash T, Hameed S, Imran A, Hanif MK, Majeed A, van Elsas JD (2016) Differential response of potato toward inoculation with taxonomically diverse plant growth promoting rhizobacteria. Front Plant Sci 7:144PubMedPubMedCentralCrossRefGoogle Scholar
  109. Narayanasamy P (2013) Mechanisms of action of fungal biological control agents. In: Narayanasamy P (ed) Biological management of diseases of crops, progress in biological control. Springer Science + Business Media, Dordrecht, pp 99–200CrossRefGoogle Scholar
  110. Nascimento F, Brigido C, Alho L, Glick BR, Oliveira S (2012) Enhanced chickpea growth-promotion ability of a Mesorhizobium strain expressing an exogenous ACC deaminase gene. Plant Soil 353:221–230CrossRefGoogle Scholar
  111. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270PubMedCrossRefGoogle Scholar
  112. Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726PubMedCrossRefGoogle Scholar
  113. Nichols M, Hilmi M (2009) Growing vegetables for home and market. Diversification booklet number 11. FAO, Rome, ItalyGoogle Scholar
  114. Niranjana SR, Hariprasad P (2014) Understanding the mechanism involved in pgpr-mediated growth promotion and suppression of biotic and abiotic stress in plants. In: Goyal A, Manoharachary C (eds) Future challenges in crop protection against fungal pathogens, fungal biology. Springer Science + Business Media, New York, pp 59–108Google Scholar
  115. Nosrati R, Owlia P, Saderi H, Rasooli I, Malboobi MA (2014) Phosphate solubilization characteristics of efficient nitrogen fixing soil Azotobacter strains. Iran J Microbiol 6:285–295PubMedPubMedCentralGoogle Scholar
  116. O’Hara GW, Daniel RM (1985) Rhizobial denitrification: a review. Soil Biol Biochem 17:1–9CrossRefGoogle Scholar
  117. Ortiz Castro R, Valencia-Cantero E, Lopez-Bucio J (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal Behav 3:263–265PubMedPubMedCentralCrossRefGoogle Scholar
  118. Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745PubMedPubMedCentralCrossRefGoogle Scholar
  119. Pastor N, Rosas S, Luna V, Rovera M (2014) Inoculation with Pseudomonas putida PCI2, a phosphate solubilizing rhizobacterium, stimulates the growth of tomato plants. Symbiosis 62:157–167CrossRefGoogle Scholar
  120. Patil S, Bheemaraddi MC, Shivannavar CT, Gaddad SM (2014) Biocontrol activity of siderophore producing Bacillus subtilis CTS-G24 against wilt and dry root rot causing fungi in chickpea. IOSR-JAVS 7:63–68CrossRefGoogle Scholar
  121. Pavlo A, Leonid O, Iryna Z, Natalia K, Maria PA (2011) Endophytic bacteria enhancing growth and disease resistance of potato (Solanum tuberosum L.) Biol Control 56:43–49CrossRefGoogle Scholar
  122. Peix A, Rivas-Boyero AA, Mateos PF, Rodriguez-Barrueco C, Martı́nez-Molina E, Velazquez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110CrossRefGoogle Scholar
  123. Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15PubMedCrossRefGoogle Scholar
  124. Philippot L, Hallin S, Schloter M (2007) Ecology of denitrifying prokaryotes in agricultural soil. In: Donald LS (ed) Advances in agronomy, vol 96. Elsevier Inc., NetherlandsGoogle Scholar
  125. Pilet PE, Chanson A (1981) Effect of abscisic acid on maize root growth: a critical examination. Plant Sci Lett 21:99–106CrossRefGoogle Scholar
  126. Pilet PE, Saugy M (1987) Effect on root growth of endogenous and applied IAA and ABA: a critical reexamination. Plant Physiol 83:33–38PubMedPubMedCentralCrossRefGoogle Scholar
  127. Pishchik VN, Chernyaeva II, Kozhemaykov AP, Vorobyov NI, Lazarev AM, Kozlov LP (1998) Effect of inoculation with nitrogen-fixing Klebsiella on potato yield. In: Malik KA et al (eds) Nitrogen fixation with non-legumes. Kluwer Academic Publishers, Great Britain, pp 223–235CrossRefGoogle Scholar
  128. Porcel R, Zamarreño AM, García-Mina JM, Aroca R (2014) Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biol 14:36. doi: 10.1186/1471-2229-14-36 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D et al (eds) Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Soil biology, vol 42. Springer International Publishing, Switzerland, pp 247–260Google Scholar
  130. Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 43:1183–1191PubMedPubMedCentralCrossRefGoogle Scholar
  131. Radzki W, Gutierrez Mañero FJ, Algar E, Lucas García JA, García-Villaraco A, Ramos Solano B (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek 104:321–330PubMedPubMedCentralCrossRefGoogle Scholar
  132. Rana A, Saharan B, Nain L, Prasanna R, Shivay YS (2012) Enhancing micronutrient uptake and yield of wheat through bacterial PGPR consortia. Soil Sci Plant Nutr 58:573–582CrossRefGoogle Scholar
  133. Raupach GS, Liu L, Murphy JF, Tuzun S, Kloepper JW (1996) Induced systemic resistance in cucumber and tomato against cucumber mosaic cucumovirus using plant growth promoting rhizobacteria. Plant Dis 80:891–894CrossRefGoogle Scholar
  134. Reddy PP (2013) Plant growth-promoting rhizobacteria (PGPR). In: Reddy PP (ed) Recent advances in crop protection. Springer, India, pp 131–158CrossRefGoogle Scholar
  135. Reddy PP (2014) Potential role of PGPR in agriculture. In: Reddy PP (ed) Plant growth promoting rhizobacteria for horticultural crop protection. Springer, India, pp 17–34Google Scholar
  136. Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Collison D, Taylor RJ (2002) Fungal siderophores: structures, functions and applications. Mycol Res 106:1123–1142CrossRefGoogle Scholar
  137. Rizvi A, Khan MS, Ahmad E (2014) Inoculation impact of phosphate-solubilizing microorganisms on growth and development of vegetable crops. In: Khan MS et al (eds) Phosphate solubilizing microorganisms. Springer International Publishing, Switzerland, pp 287–297Google Scholar
  138. Rondon MR, Ballering KS, Thomas MG (2014) Identification and analysis of a siderophore biosynthetic gene cluster from Agrobacterium tumefaciens C58. Microbiology 150:3857–3866Google Scholar
  139. Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648PubMedCrossRefGoogle Scholar
  140. Sánchez C, Tortosa G, Granados A, Delgado A, Bedmar EJ, Delgado MJ (2011) Involvement of Bradyrhizobium japonicum denitrification in symbiotic nitrogen fixation by soybean plants subjected to flooding. Soil Biol Biochem 43:212–217CrossRefGoogle Scholar
  141. Sarig S, Kapulnik Y, Okon Y (1986) Effect of Azospirillum inoculation on nitrogen fixation and growth of several winter legumes. Plant Soil 90:335–342CrossRefGoogle Scholar
  142. Sashidhar B, Podile AR (2010) Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. J Appl Microbiol 109:1–12PubMedGoogle Scholar
  143. Sayyed RZ, Chincholkar SB (2010) Growth and siderophores production in Alcaligenes faecalis is regulated by metal ions. Indian J Microbiol 50:179–182PubMedPubMedCentralCrossRefGoogle Scholar
  144. Schwarz D, Rouphael Y, Colla G, Venema JH (2010) Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants. Sci Hortic 127:162–171CrossRefGoogle Scholar
  145. Selvakumar G, Bhatt RM, Upreti KK, Bindu GH, Shweta K (2015) Citricoccus zhacaiensis B-4 (MTCC 12119) a novel osmotolerant plant growth promoting actinobacterium enhances onion (Allium cepa L.) seed germination under osmotic stress conditions. World J Microbiol Biotechnol 31:833–839PubMedCrossRefGoogle Scholar
  146. Selvakumar G, Bindu GH, Bhatt RM, Upreti KK, Paul AM, Asha A, Shweta K, Sharma M (2016) Osmotolerant cytokinin producing microbes enhance tomato growth in deficit irrigation conditions. Proc Natl Acad Sci, India, Sect B Biol Sci. doi: 10.1007/s40011-016-0766-3 Google Scholar
  147. Seyedsayamdost MR, Cleto S, Carr G, Vlamakis H, João Vieira M, Kolter R, Clardy J (2012) Mixing and matching siderophores clusters: structure and biosynthesis of serratiochelins from Serratia sp. V4. J Am Chem Soc 134:13550–13553PubMedPubMedCentralCrossRefGoogle Scholar
  148. Shaharoona B, Arshad M, Waqas R, Khalid A (2012) Role of ethylene and plant growth-promoting rhizobacteria in stressed crop plants. In: Venkateswarlu B et al (eds) Crop stress and its management: perspectives and strategies. Springer Science + Business Media B.V, Dordrecht, Netherlands, pp 429–446CrossRefGoogle Scholar
  149. Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32:237–249CrossRefGoogle Scholar
  150. Shalaby ME, Kamal EG, El-Diehi MA (2013) Biological and fungicidal antagonism of Sclerotium cepivorum for controlling onion white rot disease. Ann Microbiol 63:1579–1589CrossRefGoogle Scholar
  151. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587PubMedPubMedCentralCrossRefGoogle Scholar
  152. Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131PubMedCrossRefGoogle Scholar
  153. Siddikee MA, Glick BR, Chauhan PS, Yim WJ, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49:427–434PubMedCrossRefGoogle Scholar
  154. Sindhu SS, Dadarwal KR (2001) Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in chickpea. Microbiol Res 156:353–358PubMedCrossRefGoogle Scholar
  155. Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:93–99CrossRefGoogle Scholar
  156. Sivasakthi S, Usharani G, Saranraj P (2014) Biocontrol potentiality of plant growth promoting bacteria (PGPR)–Pseudomonas fluorescens and Bacillus subtilis: a review. Afr J Agric 9:1265–1277Google Scholar
  157. Skiba U, Smith KA, Fowler D (1993) Nitrification and denitrification as sources of nitric oxide and nitrous oxide in a sandy loam soil. Soil Biol Biochem 25:1527–1536CrossRefGoogle Scholar
  158. Song OR, Lee SJ, Lee YS, Lee SC, Kim KK, Choi YL (2008) Solubilization of insoluble inorganic phosphate by Burkholderia cepacia Da23 isolated from cultivated soil. Braz J Microbiol 39:151–156PubMedPubMedCentralCrossRefGoogle Scholar
  159. Spaepen S, Vanderleyden J, Remans R (2007a) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448PubMedCrossRefGoogle Scholar
  160. Spaepen S, Versées W, Gocke D, Pohl M, Steyaert J, Vanderleyden J (2007b) Characterization of phenylpyruvate decarboxylase, involved in auxin production of Azospirillum brasilense. J Bacteriol 189:7626–7633PubMedPubMedCentralCrossRefGoogle Scholar
  161. Spaepen and Vanderleyden (2010) Auxin and Plant-Microbe Interactions. Cold Spring Harb Perspect Biol. doi:  10.1101/cshperspect.a001438
  162. Tailor AJ, Joshi BH (2012) Characterization and optimization of siderophore production from Pseudomonas fluorescens strain isolated from sugarcane rhizosphere. J Environ Res Dev 6(3A):688–694Google Scholar
  163. Takahashi N, Phinney BO, MacMillan J (1991) Gibberellins, with 176 illustrations. Springer-Verlag New York Inc., New YorkCrossRefGoogle Scholar
  164. Taller BJ, Wong TY (1989) Cytokinins in Azotobacter vinelandii culture medium. Appl Environ Microbiol 55:266–267PubMedPubMedCentralGoogle Scholar
  165. Tian F, Ding Y, Zhu H, Yao L, Du B (2009) Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere. Braz J Microbiol 40:276–284PubMedPubMedCentralCrossRefGoogle Scholar
  166. Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852CrossRefGoogle Scholar
  167. Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171PubMedPubMedCentralCrossRefGoogle Scholar
  168. Toklikishvili N, Dandurishvili N, Vainstein A, Tediashvili M, Giorgobiani N, Lurie S, Szegedi E, Glick BR, Chernin L (2010) Inhibitory effect of ACC deaminase-producing bacteria on crown gall formation in tomato plants infected by Agrobacterium tumefaciens or A. vitis. Plant Pathol 59:1023–1030CrossRefGoogle Scholar
  169. Tomić S, Gabdoullin RR, Kojić-Prodić B, Wade RC (1998) Classification of auxin plant hormones by interaction property similarity indices. J Comput Aid Mol Des 12:63–79CrossRefGoogle Scholar
  170. Tortora ML, Díaz-Ricci JC, Pedraza RO (2011) Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch Microbiol 193:275–286PubMedCrossRefGoogle Scholar
  171. Tuomi T, Rosenquist H (1995) Detection of abscisic, gibberellic and indole-3-acetic acid from plant and microbes. Plant Physiol Biochem 33:725–734Google Scholar
  172. Tran LSP, Pal S (2014) Phytohormones: a window to metabolism, signaling and biotechnological applications. Springer Science + Business Media, New YorkCrossRefGoogle Scholar
  173. Ullah U, Ashraf M, Shahzad SM, Siddiqui AR, Piracha MA, Suleman M (2016) Growth behavior of tomato (Solanum lycopersicum L.) under drought stress in the presence of silicon and plant growth promoting rhizobacteria. Soil Environ 35:65–75Google Scholar
  174. United Nations, Department of Economic and Social Affairs, Population Division (2004) World population prospects: world population to 2300. Working paper no. ST/ESA/SER.A/236, New YorkGoogle Scholar
  175. United Nations, Department of Economic and Social Affairs, Population Division (2015) World population prospects: the 2015 revision, key findings and advance tables. Working paper no. ESA/P/WP.241, New YorkGoogle Scholar
  176. Valencia-Cantero E, Hernández-Calderón E, Velázquez-Becerra C, Joel E, López-Meza A-CR, López-Bucio J (2007) Role of dissimilatory fermentative iron-reducing bacteria in Fe uptake by common bean (Phaseolus vulgaris L.) plants grown in alkaline soil. Plant Soil 291:263–273CrossRefGoogle Scholar
  177. Valenzuela-Soto JH, Estrada-Hernàndez MG, Ibarra-Laclette E, Délano-Frier JP (2010) Inoculation of tomato plants (Solanum lycopersicum) with growth-promoting Bacillus subtilis retards white fly Bemisia tabaci development. Planta 231:397–410PubMedCrossRefGoogle Scholar
  178. Verma JP, Yadav J, Tiwari KN, Kumar A (2013) Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol Eng 51:282–228CrossRefGoogle Scholar
  179. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586CrossRefGoogle Scholar
  180. Vidhyasekaran P (2015) Auxin signaling system in plant innate immunity. In: Vidhyasekaran P (ed) Plant hormone signaling systems in plant innate immunity, signaling and communication in plants, vol 2. Springer Science + Business Media, Dordrecht, pp 311–357Google Scholar
  181. Vogel JP, Woeste KE, Theologis A, Kieber JJ (1998) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Plant Biol 95:4766–4771Google Scholar
  182. Volpiano CG, Estevam A, Saatkamp K, Furlan F, Vendruscolo ECG, Dos Santos MF (2014) Physiological responses of the co-cultivation of PGPR with two wheat cultivars in vitro under stress conditions. BMC Proceedings 2014 8(Suppl 4):P108Google Scholar
  183. Walpola BC, Yoon MH (2013) Isolation and characterization of phosphate solubilizing bacteria and their co-inoculation efficiency on tomato plant growth and phosphorous uptake. Afr J Microbiol Res 7:266–275Google Scholar
  184. Wang C, Wang C, Gao YL, Wang YP, Guo JH (2015) A consortium of three plant growth-promoting rhizobacterium strains acclimates Lycopersicon esculentum and confers a better tolerance to chilling stress. J Plant Growth Regul. doi: 10.1007/s00344-015-9506-9 Google Scholar
  185. Wang CJ, Yang W, Wang C, Gu C, Niu DD, Liu HX, Wang YP, Guo JH (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS ONE 7:1–10Google Scholar
  186. Weisbeek P, Marugg J, van der Hofstad G, Bakker P, Schippers B (1987) Siderophore biosynthesis, uptake and effect on potato growth of rhizosphere strains. In: Verma DPS et al (eds) Molecular genetics of plant-microbe interactions. Martinus Nijhoff Publishers, Dordrecht, pp 51–53CrossRefGoogle Scholar
  187. Williams M, Stout J, Roth B, Cass S, Papa V, Rees B (2014) Environmental implications of legume cropping. Legume Futures Report 3.7.
  188. Wong WS, Tan SN, Ge L, Chen X, Yong JWH (2015) The importance of phytohormones and microbes in biofertilizers. In: Maheshwari DK (ed) Bacterial metabolites in sustainable agroecosystem, sustainable development and biodiversity, vol 12. Springer International Publishing, Switzerland, pp 105–158CrossRefGoogle Scholar
  189. Xu S, Kim BS (2016) Evaluation of Paenibacillus polymyxas train SC09-21 for biocontrol of Phytophthora blight and growth stimulation in pepper plants. Trop Plant Pathol 41:162CrossRefGoogle Scholar
  190. Xun F, Xie B, Liu S, Guo C (2015) Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environ Sci Pollut Res 22:598–608CrossRefGoogle Scholar
  191. Yamaguchi M (1983) World vegetables: principles, production and nutritive values. AVI Publishing Company, Inc., Westport, CTCrossRefGoogle Scholar
  192. Yandigeri MS, Malviya N, Solanki MK, Shrivastava P, Sivakumar G (2015) Chitinolytic Streptomyces vinaceus drappus S5MW2 isolated from Chilika Lake, India enhances plant growth and biocontrol efficacy through chitin supplementation against Rhizoctonia solani. World J Microbiol Biotechnol 31:1217–1225PubMedCrossRefGoogle Scholar
  193. Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.FSNV, Equipe de Biomasse et Environnement, Laboratoire de Maitrise des Energies Renouvelables (LMER)Université de BéjaïaBéjaïaAlgeria

Personalised recommendations