Skip to main content

Plant Growth-Promoting Bacteria: Importance in Vegetable Production

  • Chapter
  • First Online:
Microbial Strategies for Vegetable Production

Abstract

A large number of soil bacteria are able to colonize the surface/interior of root system and stimulate plant growth and health. This group of bacteria, generally referred to as plant growth-promoting rhizobacteria (PGPR), enhances the growth of plants including vegetables in both conventional and stressed soil. In addition, many PGPR facilitate crop production indirectly by inhibiting various phytopathogens. Conclusively, PGPR affects plant growth via nitrogen fixation, phosphate solubilization and mineral uptake, siderophore production, antibiosis, and hydrolytic enzymes synthesis. Some of the notable PGPR capable of facilitating the growth of a varied range of vegetables such as potato, carrot, onion, etc. belong to genera Azotobacter, Azospirillum, Pseudomonas, and Bacillus. Vegetables play a major role in providing essential minerals, vitamins, and fiber, which are not present in significant quantities in staple starchy foods. Hence, to optimize vegetable production without chemical inputs, the use of PGPR in vegetable cultivation is recommended. Here, an attempt is made to highlight the role of PGPR in vegetable production under both normal and derelict soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH (1998) Growth and siderophore production in vitro of Bradyrhizobium (Lupin) strains under iron limitation. Eur J Soil Biol 34:99–104

    Article  CAS  Google Scholar 

  • Akiyoshi DA, Regier DA, Gordon MP (1987) Cytokinin production by Agrobacterium and Pseudomonas spp. J Bacteriol 169:4242–4248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167

    Article  CAS  PubMed  Google Scholar 

  • Antoun H, Prévost D (2005) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Netherlands, pp 1–38

    Google Scholar 

  • Ardisson GB, Tosin M, Barbale M, Degli-Innocenti F (2014) Biodegradation of plastics in soil and effects on nitrification activity. A laboratory approach. Front Microbiol. doi:10.3389/fmicb.2014.00710

    Google Scholar 

  • Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315

    Article  CAS  Google Scholar 

  • Arkhipova TN, Veselov SU, Melentiev AI, Martynenko EV, Kudoyarova GR (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272:201–209

    Article  CAS  Google Scholar 

  • Ashraf M, Ahmad MSA, Öztürk M, Aksoy A (2012) Crop improvement through different means: challenges and prospects. In: Ashraf M et al (eds) Crop production for agricultural improvement. Springer Science + Business Media BV, Dordrecht, Netherlands, pp 1–15

    Chapter  Google Scholar 

  • Avinash TS, Rai RV (2014) Antifungal activity of plant growth promoting rhizobacteria against Fusarium oxysporum and Phoma sp. of cucurbitaceae. In: Kharwar RN et al (eds) Microbial diversity and biotechnology in food security. Springer, India, pp 257–264

    Google Scholar 

  • Bahena MHR, Salazar S, Velázquez E, Laguerre G, Peix A (2015) Characterization of phosphate solubilizing rhizobacteria associated with pea (Pisum sativum L.) isolated from two agricultural soils. Symbiosis 67:33–41

    Article  CAS  Google Scholar 

  • Bakker PAHM, Lamers JG, Bakker AW, Marugg JD, Weisbeek PJ, Schippers B (1986) The role of siderophores in potato tuber yield increase by Pseudomonas putida in a short rotation of potato. Neth J Plant Pathol 92:249–256

    Article  Google Scholar 

  • Bakshi A, Shemansky JM, Chang C, Binder BM (2015) History of research on the plant hormone ethylene. J Plant Growth Regul 34:809–827

    Article  CAS  Google Scholar 

  • Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobrero MT (2006) Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci Hortic 109:8–14

    Article  CAS  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2012) 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation. Plant Physiol Biochem 58:227–235

    Article  CAS  PubMed  Google Scholar 

  • Bar-Ness E, Hadar Y, Chen Y, Shanzer A, Libman J (1992) Iron uptake by plants from microbial siderophores. Plant Physiol 99:1329–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastian F, Cohen A, Piccoli P, Luna V, Baraldi R, Bottini R (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically defined media. Plant Growth Regul 24:7–11

    Article  CAS  Google Scholar 

  • Belimov AA, Dodd IC, Safronova VI, Shaposhnikov AI, Azarova TS, Makarova NM, Davies WJ, Tikhonovich IA (2015) Rhizobacteria that produce auxins and contain 1 amino-cyclopropane-1-carboxylic acid deaminase decrease amino acid concentrations in the rhizosphere and improve growth and yield of well-watered and water-limited potato (Solanum tuberosum). Ann Appl Biol 167:11–25

    Article  CAS  Google Scholar 

  • Ben Abdallah RA, Mokni-Tlili S, Nefzi A, Jabnoun-Khiareddine H, Daami-Remadi M (2016) Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biol Control 97:80–88

    Article  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bensalim S, Nowak J, Asiedu SK (1998) A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75:145–152

    Article  Google Scholar 

  • Bertrand JC, Bonin P, Caumette P, Gattuso JP, Grégori G, Guyoneaud R, Le Roux X, Matheron R, Poly F (2015) Biogeochemical cycles. In: Bertrand JC et al (eds) Environmental microbiology: fundamentals and applications: microbial ecology. Springer Science + Business Media, Dordrecht, pp 511–617

    Google Scholar 

  • Beyeler M, Keel C, Michaux P, Haas D (1999) Enhanced production of indole-3-acetic acid by a genetically modified strain of Pseudomonas fluorescens CHA0 affects root growth of cucumber, but does not improve protection of the plant against Pythium root rot. FEMS Microbiol Ecol 28:225–233

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bottini R, Fulchieri M, Pearce D, Pharis RP (1989) Identification of gibberellins A1, A3, and iso-A3 in cultures of Azospirillum lipoferum. Plant Physiol 90:45–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassán F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33:440–459

    Article  CAS  Google Scholar 

  • Choudhary DK, Varma A (2016) Microbial-mediated induced systemic resistance in plants. Springer Science +Business Media, Singapore

    Book  Google Scholar 

  • Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974

    Article  CAS  Google Scholar 

  • Cohen MF, Mazzola M (2006) Resident bacteria, nitric oxide emission and particle size modulate the effect of Brassica napus seed meal on disease incited by Rhizoctonia solani and Pythium spp. Plant Soil 286:75–86

    Article  CAS  Google Scholar 

  • Cohen MF, Lamattina L, Yamasaki H (2010) Nitric oxide signaling by plant-associated bacteria. In: Hayat S et al (eds) Nitric oxide in plant physiology. WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim

    Google Scholar 

  • Conard K, Bettin D, Neumann S (1992) The cytokinin production of Azospirillum and Klebsiella and its possible ecological effects. In: Kamínek M et al (eds) Physiology and biochemistry of cytokinins in plants: Proc Intern Symp Physiol Biochem of cytokinins in plants. SPB Academic Publishing BV, The Hague, Netherlands, pp 401–405

    Google Scholar 

  • Crespo J, Boiardi J, Luna M (2011) Mineral phosphate solubilization activity of gluconacetobacter diazotrophicus under P-limitation and plant root environment. Agric Sci 2:16–22

    CAS  Google Scholar 

  • Cronin D, Moenne-Loccoz Y, Dunne C, O’Gara F (1997) Inhibition of egg hatch of the potato cyst nematode Globodera rostochiensis by chitinase-producing bacteria. Eur J Plant Pathol 103:433–440

    Article  Google Scholar 

  • Dashti N, Zhang F, Hynes R, Smith DL (1998) Plant growth promoting rhizobacteria accelerates nodulation and increase nitrogen fixation activity by field grown soybean [Glycine max (L.) Merr.] under short season conditions. Plant Soil 200:205–213

    Article  CAS  Google Scholar 

  • Datta B, Chakrabartty PK (2014) Siderophore biosynthesis genes of Rhizobium sp. isolated from Cicer arietinum L. 3 Biotech 4:391–401

    Article  PubMed  Google Scholar 

  • Di DW, Zhang C, Luo P, An CW, Guo GQ (2016) The biosynthesis of auxin: how many paths truly lead to IAA? Plant Growth Regul 78:275–285

    Article  CAS  Google Scholar 

  • Donderski W, Głuchowska M (2000) Production of cytokinin-like substances by planktonic bacteria isolated from lake Jeziorak. Pol J Environ Stud 9:369–376

    CAS  Google Scholar 

  • Egamberdieva D, Lugtenberg B (2014) Use of plant growth-promoting rhizobacteria to alleviate salinity stress in plants. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer Science + Business Media, New York, pp 73–96

    Chapter  Google Scholar 

  • Elmerich C (2007) Historical perspective: from bacterization to endophytes. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen-fixing bacteria and Cyanobacterial associations. Springer, The Netherlands, pp 1–16

    Chapter  Google Scholar 

  • Endo A, Okamoto M, Koshiba T (2014) ABA biosynthetic and catabolic pathways. In: Zhang DP (ed) Abscisic acid: metabolism, transport and signaling. Springer Science + Business Media, Dordrecht, pp 21–46

    Google Scholar 

  • Etesami H, Alikhani HA, Hosseini HM (2015) Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX 2:72–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Fekete FA, Spence JT, Emery T (1983) Siderophores produced by nitrogen-fixing Azotobacter vinelandii OP in iron-limited continuous culture. Appl Environ Microbiol 46:1297–1300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Figueiredo MVB, Bonifacio A, Rodrigues AC, Araujo FF (2016) Plant growth-promoting rhizobacteria: key mechanisms of action. In: Choudhary DK, Varma A (eds) Microbial-mediated induced systemic resistance in plants. Springer Science + Business Media, Singapore, pp 23–37

    Chapter  Google Scholar 

  • Fresco LO, Baudoin WO (2002) Food and nutrition security towards human security. In: ICV souvenir paper. International Conference on Vegetables, World Food Summit: five years later, 11–13 June 2002, Rome, Italy

    Google Scholar 

  • Fukuyama K (2004) Structure and function of plant-type ferredoxins. Photosynth Res 81:289–230

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Zhao Y (2014) Auxin biosynthesis and catabolism. In: Zažímalová E et al (eds) Auxin and its role in plant development. Springer-Verlag, Vienna, pp 21–38

    Chapter  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Gomez-Cadenas A, Vives V, Zandalinas SI, Manzi M, Sanchez-Perez AM, Perez-Clemente RM, Arbona V (2015) Abscisic acid: a versatile phytohormone in plant signaling and beyond. Curr Protein Pept Sci 16:413–434

    Article  CAS  PubMed  Google Scholar 

  • Gravel V, Antoun H, Tweddell RJ (2007) Effect of indole-acetic acid (IAA) on the development of symptoms caused by Pythium ultimum on tomato plants. Eur J Plant Pathol 119:457–462

    Article  CAS  Google Scholar 

  • Gray EJ, Smith DL (2004) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Gupta A, Gupal M, Tilak KVBR (2000) Mechanism of plant growth promotion by rhizobacteria. Indian J Exp Biol 38:856–862

    CAS  PubMed  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:096–102

    Google Scholar 

  • Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ros-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32:245–258

    Article  CAS  Google Scholar 

  • Hao Y, Charles TC, Glick BR (2010) ACC deaminase increases the Agrobacterium tumefaciens-mediated transformation of commercial canola cultivars. FEMS Microbiol Lett 307:185–190

    Article  CAS  PubMed  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Royal Soc Chem 27:637–657

    CAS  Google Scholar 

  • Hofstra N, Bouwman AF (2005) Denitrification in agricultural soils: summarizing published data and estimating global annual rates. Nutr Cycl Agroecosyst 72:267–278

    Article  Google Scholar 

  • Höfte M, Bakker PAHM (2007) Competition for iron and induced systemic resistance by siderophores of plant growth promoting rhizobacteria. In: Varma A, Chincholkar SB (eds) Soil biology, vol. 12. Microbial siderophore. Springer-Verlag, Berlin Heidelberg, pp 121–133

    Chapter  Google Scholar 

  • Husen E, Wahyudi AT, Suwanto A, Giyanto (2011) Growth enhancement and disease reduction of soybean by 1-aminocyclopropane-1-carboxylate deaminase-producing pseudomonas. Am J Appl Sci 8:1073–1080

    Article  CAS  Google Scholar 

  • Hussain A, Hasnain S (2009) Cytokinin production by some bacteria: its impact on cell division in cucumber cotyledons. Afr J Microbiol Res 3:704–712

    CAS  Google Scholar 

  • Idso CD (2011) Estimates of global food production in the year 2050: will we produce enough to adequately feed the world? Center for the Study of Carbon Dioxide and Global Change. www.co2science.org

    Google Scholar 

  • Jagadeesh KS, Kulkarni JH, Krishnaraj PU (2001) Evaluation of the role of fluorescent siderophore in the biological control of bacterial wilt in tomato using Tn5 mutants of fluorescent Pseudomonas sp. Curr Sci 81:882–883

    Google Scholar 

  • Janzen R, Rood S, Dormar J, McGill W (1992) Azospirillum brasilense produces gibberellins in pure culture and chemically-medium and in co-culture on straw. Soil Biol Biochem 24:1061–1064

    Article  CAS  Google Scholar 

  • Joo GJ, Kang SM, Hamayun M, Kim SK, Na CI, Shin DH, Lee IJ (2009) Burkholderia sp. KCTC 11096BP as newly isolated gibberellin producing bacterium. J Microbiol 47:167–171

    Article  CAS  PubMed  Google Scholar 

  • Joo GJ, Kim YM, Kim JT, Rhee IK, Kim JH, Lee IJ (2005) Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43:510–515

    CAS  PubMed  Google Scholar 

  • Joo GJ, Kim YM, Lee IJ, Song KS, Rhee IK (2004) Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnol Lett 26:487–491

    Article  CAS  PubMed  Google Scholar 

  • Kämpfer P, Ruppel S, Remus R (2005) Enterobacter radicincitans sp. nov., a plant growth promoting species of the family Enterobacteriaceae. Syst Appl Microbiol 28:213–221

    Article  PubMed  CAS  Google Scholar 

  • Kang SM, Joo GJ, Hamayun M, Na CI, Shin DH, Kim HY, Hong JK, Lee IJ (2009) Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol Lett 31:277–281

    Article  CAS  PubMed  Google Scholar 

  • Kang SM, Khan AL, Hamayun M, Hussain J, Joo GJ, You YH, Kim JG, Lee IJ (2012) Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones. J Microbiol 50:902–909

    Article  CAS  PubMed  Google Scholar 

  • Kang SM, Waqas M, Khan AL, Lee IJ (2014) Plant-growth-promoting rhizobacteria: potential candidates for gibberellins production and crop growth promotion. In: Miransari M et al (eds) Use of microbes for the alleviation of soil stresses, vol 1. Springer Science + Business Media, New York, pp 1–19

    Chapter  Google Scholar 

  • Kannahi M, Senbagam N (2014) Studies on siderophore production by microbial isolates obtained from rhizosphere soil and its antibacterial activity. J Chem Pharm Res 6:1142–1145

    CAS  Google Scholar 

  • Karadeniz A, Topcuoğlu SF, İnan S (2006) Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J Microbiol Biotechnol 22:1061–1064

    Article  CAS  Google Scholar 

  • Kathiresan K, Saravanakumar K, Anburaj R, Gomathi V, Abirami G, Sahu SK, Anandhan S (2011) Microbial enzyme activity in decomposing leaves of mangroves. Int J Adv Biotechnol Res 2:382–389

    Google Scholar 

  • Kende H, Zeevaart JAD (1997) The five “classical” plant hormones. Plant Cell 9:1197–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AL, Halo BA, Elyassi A, Ali S, Al-Hosni K, Hussain J, Al-Harrasi A, Lee IJ (2016) Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron J Biotechnol 21:58–64

    Article  CAS  Google Scholar 

  • Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1:48–58

    Google Scholar 

  • Khan AL, Waqas M, Kang SM, Al-Harrasi A, Hussain J, Al-Rawahi A, Al-Khiziri S, Ullah I, Ali L, Jung HY, Lee IJ (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and iaa and promotes tomato plant growth. J Microbiol 52:689–695

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Ahmad E (2014) Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In: Khan MS et al (eds) Phosphate solubilizing microorganisms. Springer International Publishing, Switzerland, pp 31–62

    Google Scholar 

  • Kiseleva AA, Tarachovskaya ER, Shishova MF (2012) Biosynthesis of phytohormones in algae. Russ J Plant Physiol 59:595–610

    Article  CAS  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria, vol 2. Station de Pathologie Végétale et de Phytobactériologie, INRA, Angers, France, pp 879–882

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Knowles R (2004) Nitrogen cycle. In: Schaechter M (ed) The desk encyclopedia of microbiology. Elsevier, China, pp 690–701

    Google Scholar 

  • Kohler J, Caravaca F, Carrasco L, Roldán A (2007) Interactions between a plant growth-promoting rhizobacterium, an AM fungus and a phosphate-solubilising fungus in the rhizosphere of Lactuca sativa. Appl Soil Ecol 35:480–487

    Article  Google Scholar 

  • Konappa NM, Maria M, Uzma F, Krishnamurthy S, Nayaka SC, Niranjana SR, Chowdappa S (2016) Lactic acid bacteria mediated induction of defense enzymes to enhance the resistance in tomato against Ralstonia solanacearum causing bacterial wilt. Sci Hortic 207:183–192

    Article  CAS  Google Scholar 

  • Krishnaraj PU, Dahale S (2014) Mineral phosphate solubilization: concepts and prospects in sustainable agriculture. Proc Indian Natl Sci Acad 80:389–405

    Article  Google Scholar 

  • Kumar NR, Krishnan M, Kandeepan C, Kayalvizhi N (2014) Molecular and functional diversity of PGPR fluorescent Pseudomonas isolated from rhizosphere of rice (Oryza sativa L.) Int J Adv Biotechnol Res 5:490–505

    Google Scholar 

  • Kümmerli R, Schiessl KT, Waldvogel T, McNeill K, Ackermann M (2014) Habitat structure and the evolution of diffusible siderophores in bacteria. Ecol Lett 17:1536–1544

    Article  PubMed  Google Scholar 

  • Landa BB, Montes-Borrego M, Navas-Cortés JA (2013) Use of PGPR for controlling soilborne fungal pathogens: assessing the factors influencing its efficacy. In: Maheshwari DK (ed) Bacteria in agrobiology: disease management. Springer-Verlag, Berlin Heidelberg, pp 259–292

    Chapter  Google Scholar 

  • Laslo E, György E, Mathé I, Mara G, Tamas E, Abraham B, Lanyi S (2011) Replacement of the traditional fertilizer with microbial technology: isolation and characterization of beneficial nitrogen fixing rhizobacteria. U P B Sci Bull 73:109–114

    CAS  Google Scholar 

  • Lee SW, Lee SH, Balaraju K, Park KS, Nam KW, Park JW, Park K (2014) Growth promotion and induced disease suppression of four vegetable crops by a selected plant growth-promoting rhizobacteria (PGPR) strain Bacillus subtilis 21-1 under two different soil conditions. Acta Physiol Plant 36:1353–1362

    Article  CAS  Google Scholar 

  • Leyval C, Berthelin J (1989) Interaction between Laccaria laccata, Agrobacterium agrobacter and beech roots: influence on P, K, Mg and Fe mobilization from minerals and plant growth. Plant Soil 117:103–110

    Article  CAS  Google Scholar 

  • Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y (2014) Metalloproteins containing cytochrome, iron–sulfur, or copper redox centers. Chem Rev 114:4366–4469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardo MC, Graziano M, Polacco JC, Lamattina L (2006) Nitric oxide functions as a positive regulator of root hair development. Plant Signal Behav 1:28–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Ma B, Chen H, Chen SY, Zhang JS (2014) Roles of ethylene in plant growth and responses to stresses. In: Tran LSP, Pal S (eds) Phytohormones: a window to metabolism, signaling and biotechnological applications. Springer Science + Business Media, New York, pp 81–118

    Chapter  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manage 90:831–837

    Article  PubMed  Google Scholar 

  • MacMillan J, Suter PJ (1958) The occurrence of gibberellin A1 in higher plants: isolation from the seed of runner bean (Phaseolus multiflorus). Naturwissenschaften 45:46–64

    Article  CAS  Google Scholar 

  • Maheshwari DK, Dheeman S, Agarwal M (2015) Phytohormone-producing PGPR for sustainable agriculture. In: Maheshwari DK (ed) Bacterial metabolites in sustainable agroecosystem, sustainable development and biodiversity, vol 12. Springer International Publishing, Switzerland, pp 159–182

    Chapter  Google Scholar 

  • Malboobi MA, Behbahani M, Madani H, Owlia P, Deljou A, Yakhchali B, Moradi M, Hassanabadi H (2009) Performance evaluation of potent phosphate solubilizing bacteria in potato rhizosphere. World J Microbiol Biotechnol 25:1479–1484

    Article  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Miao G, Jian-jiao Z, En-tao W, Qian C, Jing X, Jian-guang S (2014) Multiphasic characterization of a plant growth promoting bacterial strain, Burkholderia sp. 7016 and its effect on tomato growth in the field. J Integr Agric 14:1855–1863

    Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moradi H, Bahramnejad B, Amini J, Siosemardeh A, Haji-Allahverdipoor K (2012) Suppression of chickpea (Cicer arietinum L.) Fusarium wilt by Bacillus subtilis and Trichoderma harzianum. POJ 5(2):68–74

    CAS  Google Scholar 

  • Morrone D, Chambers J, Lowry L, Kim G, Anterola A, Bender K, Peters RJ (2009) Gibberellin biosynthesis in bacteria: separate ent-copalyl diphosphate and ent-kaurene synthases in Bradyrhizobium japonicum. FEBS Lett 583:475–480

    Article  CAS  PubMed  Google Scholar 

  • Muriel C, Jalvo B, Redondo-Nieto M, Rivilla R, Martín M (2015) Chemotactic motility of Pseudomonas fluorescens F113 under aerobic and denitrification conditions. PLoS ONE 10(7):e0132242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murthy KN, Uzma F, Chitrashree, Srinivas C (2014) Induction of systemic resistance in tomato against Ralstonia solanacearum by Pseudomonas fluorescens. AJPS 5:1799–1811

    Article  Google Scholar 

  • Nadeem SM, Naveed M, Ahmad M, Zahir ZA (2015) Rhizosphere bacteria for crop production and improvement of stress tolerance: mechanisms of action, applications, and future prospects. In: Arora NK (ed) Plant microbes symbiosis: applied facets, vol 1. Springer, India, pp 1–36

    Google Scholar 

  • Naqqash T, Hameed S, Imran A, Hanif MK, Majeed A, van Elsas JD (2016) Differential response of potato toward inoculation with taxonomically diverse plant growth promoting rhizobacteria. Front Plant Sci 7:144

    Article  PubMed  PubMed Central  Google Scholar 

  • Narayanasamy P (2013) Mechanisms of action of fungal biological control agents. In: Narayanasamy P (ed) Biological management of diseases of crops, progress in biological control. Springer Science + Business Media, Dordrecht, pp 99–200

    Chapter  Google Scholar 

  • Nascimento F, Brigido C, Alho L, Glick BR, Oliveira S (2012) Enhanced chickpea growth-promotion ability of a Mesorhizobium strain expressing an exogenous ACC deaminase gene. Plant Soil 353:221–230

    Article  CAS  Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    Article  CAS  PubMed  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    Article  CAS  PubMed  Google Scholar 

  • Nichols M, Hilmi M (2009) Growing vegetables for home and market. Diversification booklet number 11. FAO, Rome, Italy

    Google Scholar 

  • Niranjana SR, Hariprasad P (2014) Understanding the mechanism involved in pgpr-mediated growth promotion and suppression of biotic and abiotic stress in plants. In: Goyal A, Manoharachary C (eds) Future challenges in crop protection against fungal pathogens, fungal biology. Springer Science + Business Media, New York, pp 59–108

    Google Scholar 

  • Nosrati R, Owlia P, Saderi H, Rasooli I, Malboobi MA (2014) Phosphate solubilization characteristics of efficient nitrogen fixing soil Azotobacter strains. Iran J Microbiol 6:285–295

    PubMed  PubMed Central  Google Scholar 

  • O’Hara GW, Daniel RM (1985) Rhizobial denitrification: a review. Soil Biol Biochem 17:1–9

    Article  Google Scholar 

  • Ortiz Castro R, Valencia-Cantero E, Lopez-Bucio J (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal Behav 3:263–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745

    Article  PubMed  PubMed Central  Google Scholar 

  • Pastor N, Rosas S, Luna V, Rovera M (2014) Inoculation with Pseudomonas putida PCI2, a phosphate solubilizing rhizobacterium, stimulates the growth of tomato plants. Symbiosis 62:157–167

    Article  CAS  Google Scholar 

  • Patil S, Bheemaraddi MC, Shivannavar CT, Gaddad SM (2014) Biocontrol activity of siderophore producing Bacillus subtilis CTS-G24 against wilt and dry root rot causing fungi in chickpea. IOSR-JAVS 7:63–68

    Article  Google Scholar 

  • Pavlo A, Leonid O, Iryna Z, Natalia K, Maria PA (2011) Endophytic bacteria enhancing growth and disease resistance of potato (Solanum tuberosum L.) Biol Control 56:43–49

    Article  Google Scholar 

  • Peix A, Rivas-Boyero AA, Mateos PF, Rodriguez-Barrueco C, Martı́nez-Molina E, Velazquez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110

    Article  CAS  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

    Article  CAS  PubMed  Google Scholar 

  • Philippot L, Hallin S, Schloter M (2007) Ecology of denitrifying prokaryotes in agricultural soil. In: Donald LS (ed) Advances in agronomy, vol 96. Elsevier Inc., Netherlands

    Google Scholar 

  • Pilet PE, Chanson A (1981) Effect of abscisic acid on maize root growth: a critical examination. Plant Sci Lett 21:99–106

    Article  CAS  Google Scholar 

  • Pilet PE, Saugy M (1987) Effect on root growth of endogenous and applied IAA and ABA: a critical reexamination. Plant Physiol 83:33–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pishchik VN, Chernyaeva II, Kozhemaykov AP, Vorobyov NI, Lazarev AM, Kozlov LP (1998) Effect of inoculation with nitrogen-fixing Klebsiella on potato yield. In: Malik KA et al (eds) Nitrogen fixation with non-legumes. Kluwer Academic Publishers, Great Britain, pp 223–235

    Chapter  Google Scholar 

  • Porcel R, Zamarreño AM, García-Mina JM, Aroca R (2014) Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biol 14:36. doi:10.1186/1471-2229-14-36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D et al (eds) Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Soil biology, vol 42. Springer International Publishing, Switzerland, pp 247–260

    Google Scholar 

  • Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 43:1183–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radzki W, Gutierrez Mañero FJ, Algar E, Lucas García JA, García-Villaraco A, Ramos Solano B (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek 104:321–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rana A, Saharan B, Nain L, Prasanna R, Shivay YS (2012) Enhancing micronutrient uptake and yield of wheat through bacterial PGPR consortia. Soil Sci Plant Nutr 58:573–582

    Article  CAS  Google Scholar 

  • Raupach GS, Liu L, Murphy JF, Tuzun S, Kloepper JW (1996) Induced systemic resistance in cucumber and tomato against cucumber mosaic cucumovirus using plant growth promoting rhizobacteria. Plant Dis 80:891–894

    Article  Google Scholar 

  • Reddy PP (2013) Plant growth-promoting rhizobacteria (PGPR). In: Reddy PP (ed) Recent advances in crop protection. Springer, India, pp 131–158

    Chapter  Google Scholar 

  • Reddy PP (2014) Potential role of PGPR in agriculture. In: Reddy PP (ed) Plant growth promoting rhizobacteria for horticultural crop protection. Springer, India, pp 17–34

    Google Scholar 

  • Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Collison D, Taylor RJ (2002) Fungal siderophores: structures, functions and applications. Mycol Res 106:1123–1142

    Article  CAS  Google Scholar 

  • Rizvi A, Khan MS, Ahmad E (2014) Inoculation impact of phosphate-solubilizing microorganisms on growth and development of vegetable crops. In: Khan MS et al (eds) Phosphate solubilizing microorganisms. Springer International Publishing, Switzerland, pp 287–297

    Google Scholar 

  • Rondon MR, Ballering KS, Thomas MG (2014) Identification and analysis of a siderophore biosynthetic gene cluster from Agrobacterium tumefaciens C58. Microbiology 150:3857–3866

    Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  PubMed  Google Scholar 

  • Sánchez C, Tortosa G, Granados A, Delgado A, Bedmar EJ, Delgado MJ (2011) Involvement of Bradyrhizobium japonicum denitrification in symbiotic nitrogen fixation by soybean plants subjected to flooding. Soil Biol Biochem 43:212–217

    Article  CAS  Google Scholar 

  • Sarig S, Kapulnik Y, Okon Y (1986) Effect of Azospirillum inoculation on nitrogen fixation and growth of several winter legumes. Plant Soil 90:335–342

    Article  Google Scholar 

  • Sashidhar B, Podile AR (2010) Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. J Appl Microbiol 109:1–12

    CAS  PubMed  Google Scholar 

  • Sayyed RZ, Chincholkar SB (2010) Growth and siderophores production in Alcaligenes faecalis is regulated by metal ions. Indian J Microbiol 50:179–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz D, Rouphael Y, Colla G, Venema JH (2010) Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants. Sci Hortic 127:162–171

    Article  CAS  Google Scholar 

  • Selvakumar G, Bhatt RM, Upreti KK, Bindu GH, Shweta K (2015) Citricoccus zhacaiensis B-4 (MTCC 12119) a novel osmotolerant plant growth promoting actinobacterium enhances onion (Allium cepa L.) seed germination under osmotic stress conditions. World J Microbiol Biotechnol 31:833–839

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar G, Bindu GH, Bhatt RM, Upreti KK, Paul AM, Asha A, Shweta K, Sharma M (2016) Osmotolerant cytokinin producing microbes enhance tomato growth in deficit irrigation conditions. Proc Natl Acad Sci, India, Sect B Biol Sci. doi:10.1007/s40011-016-0766-3

    Google Scholar 

  • Seyedsayamdost MR, Cleto S, Carr G, Vlamakis H, João Vieira M, Kolter R, Clardy J (2012) Mixing and matching siderophores clusters: structure and biosynthesis of serratiochelins from Serratia sp. V4. J Am Chem Soc 134:13550–13553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaharoona B, Arshad M, Waqas R, Khalid A (2012) Role of ethylene and plant growth-promoting rhizobacteria in stressed crop plants. In: Venkateswarlu B et al (eds) Crop stress and its management: perspectives and strategies. Springer Science + Business Media B.V, Dordrecht, Netherlands, pp 429–446

    Chapter  Google Scholar 

  • Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32:237–249

    Article  Google Scholar 

  • Shalaby ME, Kamal EG, El-Diehi MA (2013) Biological and fungicidal antagonism of Sclerotium cepivorum for controlling onion white rot disease. Ann Microbiol 63:1579–1589

    Article  CAS  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Siddikee MA, Glick BR, Chauhan PS, Yim WJ, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49:427–434

    Article  CAS  PubMed  Google Scholar 

  • Sindhu SS, Dadarwal KR (2001) Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in chickpea. Microbiol Res 156:353–358

    Article  CAS  PubMed  Google Scholar 

  • Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:93–99

    Article  Google Scholar 

  • Sivasakthi S, Usharani G, Saranraj P (2014) Biocontrol potentiality of plant growth promoting bacteria (PGPR)–Pseudomonas fluorescens and Bacillus subtilis: a review. Afr J Agric 9:1265–1277

    Google Scholar 

  • Skiba U, Smith KA, Fowler D (1993) Nitrification and denitrification as sources of nitric oxide and nitrous oxide in a sandy loam soil. Soil Biol Biochem 25:1527–1536

    Article  CAS  Google Scholar 

  • Song OR, Lee SJ, Lee YS, Lee SC, Kim KK, Choi YL (2008) Solubilization of insoluble inorganic phosphate by Burkholderia cepacia Da23 isolated from cultivated soil. Braz J Microbiol 39:151–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007a) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Versées W, Gocke D, Pohl M, Steyaert J, Vanderleyden J (2007b) Characterization of phenylpyruvate decarboxylase, involved in auxin production of Azospirillum brasilense. J Bacteriol 189:7626–7633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spaepen and Vanderleyden (2010) Auxin and Plant-Microbe Interactions. Cold Spring Harb Perspect Biol. doi: 10.1101/cshperspect.a001438

  • Tailor AJ, Joshi BH (2012) Characterization and optimization of siderophore production from Pseudomonas fluorescens strain isolated from sugarcane rhizosphere. J Environ Res Dev 6(3A):688–694

    Google Scholar 

  • Takahashi N, Phinney BO, MacMillan J (1991) Gibberellins, with 176 illustrations. Springer-Verlag New York Inc., New York

    Book  Google Scholar 

  • Taller BJ, Wong TY (1989) Cytokinins in Azotobacter vinelandii culture medium. Appl Environ Microbiol 55:266–267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian F, Ding Y, Zhu H, Yao L, Du B (2009) Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere. Braz J Microbiol 40:276–284

    Article  PubMed  PubMed Central  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    Article  CAS  Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toklikishvili N, Dandurishvili N, Vainstein A, Tediashvili M, Giorgobiani N, Lurie S, Szegedi E, Glick BR, Chernin L (2010) Inhibitory effect of ACC deaminase-producing bacteria on crown gall formation in tomato plants infected by Agrobacterium tumefaciens or A. vitis. Plant Pathol 59:1023–1030

    Article  Google Scholar 

  • Tomić S, Gabdoullin RR, Kojić-Prodić B, Wade RC (1998) Classification of auxin plant hormones by interaction property similarity indices. J Comput Aid Mol Des 12:63–79

    Article  Google Scholar 

  • Tortora ML, Díaz-Ricci JC, Pedraza RO (2011) Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch Microbiol 193:275–286

    Article  CAS  PubMed  Google Scholar 

  • Tuomi T, Rosenquist H (1995) Detection of abscisic, gibberellic and indole-3-acetic acid from plant and microbes. Plant Physiol Biochem 33:725–734

    CAS  Google Scholar 

  • Tran LSP, Pal S (2014) Phytohormones: a window to metabolism, signaling and biotechnological applications. Springer Science + Business Media, New York

    Book  Google Scholar 

  • Ullah U, Ashraf M, Shahzad SM, Siddiqui AR, Piracha MA, Suleman M (2016) Growth behavior of tomato (Solanum lycopersicum L.) under drought stress in the presence of silicon and plant growth promoting rhizobacteria. Soil Environ 35:65–75

    Google Scholar 

  • United Nations, Department of Economic and Social Affairs, Population Division (2004) World population prospects: world population to 2300. Working paper no. ST/ESA/SER.A/236, New York

    Google Scholar 

  • United Nations, Department of Economic and Social Affairs, Population Division (2015) World population prospects: the 2015 revision, key findings and advance tables. Working paper no. ESA/P/WP.241, New York

    Google Scholar 

  • Valencia-Cantero E, Hernández-Calderón E, Velázquez-Becerra C, Joel E, López-Meza A-CR, López-Bucio J (2007) Role of dissimilatory fermentative iron-reducing bacteria in Fe uptake by common bean (Phaseolus vulgaris L.) plants grown in alkaline soil. Plant Soil 291:263–273

    Article  CAS  Google Scholar 

  • Valenzuela-Soto JH, Estrada-Hernàndez MG, Ibarra-Laclette E, Délano-Frier JP (2010) Inoculation of tomato plants (Solanum lycopersicum) with growth-promoting Bacillus subtilis retards white fly Bemisia tabaci development. Planta 231:397–410

    Article  CAS  PubMed  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Kumar A (2013) Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol Eng 51:282–228

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vidhyasekaran P (2015) Auxin signaling system in plant innate immunity. In: Vidhyasekaran P (ed) Plant hormone signaling systems in plant innate immunity, signaling and communication in plants, vol 2. Springer Science + Business Media, Dordrecht, pp 311–357

    Google Scholar 

  • Vogel JP, Woeste KE, Theologis A, Kieber JJ (1998) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Plant Biol 95:4766–4771

    CAS  Google Scholar 

  • Volpiano CG, Estevam A, Saatkamp K, Furlan F, Vendruscolo ECG, Dos Santos MF (2014) Physiological responses of the co-cultivation of PGPR with two wheat cultivars in vitro under stress conditions. BMC Proceedings 2014 8(Suppl 4):P108

    Google Scholar 

  • Walpola BC, Yoon MH (2013) Isolation and characterization of phosphate solubilizing bacteria and their co-inoculation efficiency on tomato plant growth and phosphorous uptake. Afr J Microbiol Res 7:266–275

    CAS  Google Scholar 

  • Wang C, Wang C, Gao YL, Wang YP, Guo JH (2015) A consortium of three plant growth-promoting rhizobacterium strains acclimates Lycopersicon esculentum and confers a better tolerance to chilling stress. J Plant Growth Regul. doi:10.1007/s00344-015-9506-9

    Google Scholar 

  • Wang CJ, Yang W, Wang C, Gu C, Niu DD, Liu HX, Wang YP, Guo JH (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS ONE 7:1–10

    Google Scholar 

  • Weisbeek P, Marugg J, van der Hofstad G, Bakker P, Schippers B (1987) Siderophore biosynthesis, uptake and effect on potato growth of rhizosphere strains. In: Verma DPS et al (eds) Molecular genetics of plant-microbe interactions. Martinus Nijhoff Publishers, Dordrecht, pp 51–53

    Chapter  Google Scholar 

  • Williams M, Stout J, Roth B, Cass S, Papa V, Rees B (2014) Environmental implications of legume cropping. Legume Futures Report 3.7. www.legumefutures.de

  • Wong WS, Tan SN, Ge L, Chen X, Yong JWH (2015) The importance of phytohormones and microbes in biofertilizers. In: Maheshwari DK (ed) Bacterial metabolites in sustainable agroecosystem, sustainable development and biodiversity, vol 12. Springer International Publishing, Switzerland, pp 105–158

    Chapter  Google Scholar 

  • Xu S, Kim BS (2016) Evaluation of Paenibacillus polymyxas train SC09-21 for biocontrol of Phytophthora blight and growth stimulation in pepper plants. Trop Plant Pathol 41:162

    Article  Google Scholar 

  • Xun F, Xie B, Liu S, Guo C (2015) Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environ Sci Pollut Res 22:598–608

    Article  CAS  Google Scholar 

  • Yamaguchi M (1983) World vegetables: principles, production and nutritive values. AVI Publishing Company, Inc., Westport, CT

    Book  Google Scholar 

  • Yandigeri MS, Malviya N, Solanki MK, Shrivastava P, Sivakumar G (2015) Chitinolytic Streptomyces vinaceus drappus S5MW2 isolated from Chilika Lake, India enhances plant growth and biocontrol efficacy through chitin supplementation against Rhizoctonia solani. World J Microbiol Biotechnol 31:1217–1225

    Article  CAS  PubMed  Google Scholar 

  • Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elhafid Nabti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rai, A., Nabti, E. (2017). Plant Growth-Promoting Bacteria: Importance in Vegetable Production. In: Zaidi, A., Khan, M. (eds) Microbial Strategies for Vegetable Production. Springer, Cham. https://doi.org/10.1007/978-3-319-54401-4_2

Download citation

Publish with us

Policies and ethics