Skip to main content

Microbial Inoculants in Organic Vegetable Production: Current Perspective

  • Chapter
  • First Online:

Abstract

Vegetable crops provide food and nutritional security to millions of people. They are rich in moisture and essential nutrients that make them susceptible to diseases and pests. To increase the productivity and to prevent disease and pest attack, a wide range of agrochemicals are applied to the crop which leave harmful residues in vegetables and consequently pollute the soil and groundwater. In the present situation, the growing awareness on consumption of contaminated food products and the ill effects of chemical farming on environment make people more concern for food quality and safety leading to more focus on organic vegetable production. Generally, organic farming avoids or largely excludes the use of synthetic fertilisers, pesticides, plant growth regulators, etc. but primarily rely upon biological cycle within the farming system. As a component of organic farming, microbial inoculants performs pivotal role in crop production through decomposition of organic residues, improving nutrient uptake and availability, mineralization, nutrient recycling, detoxification of organic and inorganic substances, supply of plant growth-promoting compound and suppression of disease and pest. Due to constantly diminishing biological wealth, utilisation of bioinoculants will be one of the promising alternatives as renewable resource for promoting organic vegetables. Here, an attempt has been made to highlight the potential microbial inoculants and their benefits in sustainable cultivation of organic vegetables.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alam S, Khalil S, Ayub N, Rashid M (2002) In vitro solubilization of inorganic phosphate by phosphate solubilizing microorganism (PSM) from maize rhizosphere. Int J Agric Biol 4:454–458

    CAS  Google Scholar 

  • Anburani A, Manivannan K (2002) Effect of integrated nutrient management on growth in brinjal (Solanum melongena L.) cv. Annamalai. South Indian Hortic 5:377–386

    Google Scholar 

  • Anisa NA, Markose BL, Joseph S (2016) Effect of biofertilizers on yield attributing characters and yield of okra (Abelmoschus esculentus (L.) Moench). Int J Appl Pure Sci Agric 2:59–62

    Google Scholar 

  • Anitha R, Murugesan K (2001) Mechanism of action of Gliocladium virens on Alternaria helianthi. Indian Physician 54:449–452

    Google Scholar 

  • Anonymous (2009) Nutrient requirements and recommended dietary allowances for Indians. National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India

    Google Scholar 

  • Anonymous (2014) Indian Horticulture Database—2014. National Horticultural Board, Govt. of India, Gurgaon, India

    Google Scholar 

  • Antoun H, Kloepper JW (2001) Plant growth-promoting rhizobacteria (PGPR). In: Brenner S, Miller JH (eds) Encyclopedia of genetics. Academic Press, New York, pp 1477–1480

    Chapter  Google Scholar 

  • Aparecido CC, Figueiredo MB (1999) Antagonism of Trichoderma viride against two different bean soil borne pathogenic fungi. O-Biologico 61:17–21

    Google Scholar 

  • Bassil KL, Vakil C, Sanborn M, Cole DC, Kaur JS, Kerr KJ (2007) Cancer health effects of pesticides: systematic review. Can Farm Physician 53:1704–1711

    CAS  Google Scholar 

  • Bennett CB, Lewis LK, Karthikeyan G (2001) Genes required for ionizing radiation resistance in yeast. Nat Genet 29:26–34

    Article  CAS  Google Scholar 

  • Bhagat S, Pan S (2010) Biopriming of seeds for improving germination behavior of chilli, tomato and brinjal. J Mycol Plant Pathol 40:375–379

    Google Scholar 

  • Bhattacharjee R, Dey U (2014) Biofertilizers, a way towards organic agriculture: a review. Afr J Microbiol Res 8:2332–2342

    Article  Google Scholar 

  • Bishnu A, Saha T, Ghosh PB, Mazumdar D, Chakraborty A, Chakrabarti K (2009) Effect of pesticide residues on microbiological and biochemical soil indicators in tea gardens of Darjeeling Hills, India. World J Agric Sci 5:690–697

    CAS  Google Scholar 

  • Bourn D, Prescott J (2002) A comparison of the nutritional value, sensory qualities and food safety of organically and conventionally produced foods. Crit Rev Food Sci Nutr 42:1–34

    Article  PubMed  Google Scholar 

  • Brand K, Molgaard JP (2001) Organic agriculture: does it enhance or reduce the nutritional value of plant foods? J Sci Food Agric 81:924–931

    Article  Google Scholar 

  • Bull CT, Weller DM, Thomashow LS (1991) Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strain 2-79. Phytopathology 81:950–959

    Article  Google Scholar 

  • Bunemann EK, Steinebrunner F, Smithson PC, Frossard E, Oberson A (2004) Phosphorus dynamics in a highly weathered soil as revealed by isotopic labelling techniques. Soil Sci Soc Am J 68:1645–1655

    Article  Google Scholar 

  • Bunker RN, Mathur K, Mathur K (2001) Antagonism of local biocontrol agents to Rhizoctonia solani inciting dry root rot of chilli. J Mycol Plant Pathol 31:50–53

    Google Scholar 

  • Buonassisi AJ, Copeman RJ, Pepin HS, Eaton GW (1986) Effect of Rhizobium spp. on Fusarium solani f.sp. phaseoli. Can J Phytopathol 8:140–146

    Article  Google Scholar 

  • Cartwright DK, Chilton WS, Benson DM (1995) Pyrrolnitrin and phenazine production by Pseudomonas cepacia, strain 5.5 B, a biological agent of Rhizoctonia solani. Appl Microbiol Biotechnol 43:211–221

    Article  CAS  Google Scholar 

  • Chamangasht S, Ardakani MR, Khavazi K, Abbaszadeh B, Mafakheri S (2012) Improving lettuce (Lactuca sativa L.) growth and yield by the application of biofertilizers. Ann Biol Res 3:1876–1879

    Google Scholar 

  • Chatterjee R (2009) Production of vermicompost from vegetable wastes and its effect on integrated nutrient management for vegetable production. Ph.D. thesis, UBKV, Pundibari, West Bengal

    Google Scholar 

  • Chatterjee R, Thirumdasu RK (2015) Climate change mitigation through organic farming in vegetable production. Agric Biol Sci J 1:76–82

    Google Scholar 

  • Chen YP, Rekha PD, Arunshen AB, La WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Corbett JR (1974) The biochemical mode of action of pesticides. Academic Press, Inc., London, pp 44–86

    Google Scholar 

  • Coyne MS, Mikkelsen R (2015) Soil microorganisms contribute to plant nutrition and root health. Better Crops 99:18–20

    Google Scholar 

  • Cuevas VC, Kebasen SB (2005) Ecological approach in the control of club root disease of cabbage. In: 7th annual scientific meeting and symposium, Mycological Society of the Philippines, ERDB, College, Laguna, 8 Apr 2005

    Google Scholar 

  • Dahama AK (1997) Organic farming for sustainable agriculture. Ashila Offset Printers, Daruagung, New Delhi, India

    Google Scholar 

  • Deshmukh RP, Nagre PK, Wagh AP, Dod VN (2014) Effect of different bio-fertilizers on growth, yield and quality of cluster bean. Indian J Adv Plant Res 1:39–42

    CAS  Google Scholar 

  • Dhumal KN (1992) Effect of Azotobacter on germination, growth and yield of some vegetables. J Maharashtra Agric Univ 17:500

    Google Scholar 

  • Doifode VD, Nandkar PB (2014) Influence of biofertilizers on the growth, yield and quality of brinjal crop. Int J Life Sci A2:17–20

    Google Scholar 

  • Duponnois R, Kisa M, Plenchette C (2006) Phosphate solubilising potential of the nemato-fungus Arthrobotrys oligospora. J Plant Nutr Soil Sci 169:280–282

    Article  CAS  Google Scholar 

  • El-Sayed SF, Hassan AH, El-Mogy MM (2015) Impact of bio- and organic fertilizers on potato yield, quality and tuber weight loss after harvest. Potato Res 58:67–81

    Article  Google Scholar 

  • Esitken A, Pirlak L, Turan M, Sahin F (2006) Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci Hortic 110:324–327

    Article  CAS  Google Scholar 

  • Friedlender M, Inbar J, Chet I (1993) Biological control of soil borne plant pathogens by a β-1,3-glucanase producing Pseudomonas cepacia. Soil Biol Biochem 25:1211–1221

    Article  Google Scholar 

  • García-Fraile P, Carro L, Robledo M et al (2012) Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS ONE 7:e38122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghanti S, Sharangi AB (2009) Effect of bio-fertilizers on growth, yield and quality of onion cv. Sukhsagar. J Crop Weed 5:120–123

    Google Scholar 

  • Gilden RC, Huffling K, Sattler B (2010) Pesticides and health risk. J Obstet Gynecol Neonatal Nurs 39(1):103–110

    Article  PubMed  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Godwin EMI, Arnize AE (2000) The induction of some hydrolytic enzymes and antibiotics in Trichoderma harzianum and Fusarium oxysporum using some food wastes. Global J Pure Appl Sci 6(1):31–36

    Google Scholar 

  • Ha NT (2010) Using Trichoderma species for biological control of plant pathogens in Vietnam. J ISSAAS 16:17–21

    Google Scholar 

  • Hamdan H, Weller DM, Thomashow LS (1991) Relative importance of fluorescent siderophores and other factors in biological control of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2–79 and M4-80R. Appl Environ Microbiol 57:3270–3277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harish S, Kavino M, Kumar N, Balasubramanian P, Samiyappan R (2009) Induction of defense-related proteins by mixtures of plant growth promoting endophytic bacteria against Banana bunchy top virus. Biol Control 51:16–25

    Article  CAS  Google Scholar 

  • Harman GE (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96:190–194

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Herrera-Estrella AH, Horwitz BA, Lorito M (2012) Trichoderma—from basic biology to biotechnology. Microbiology 158:1–2

    Article  CAS  PubMed  Google Scholar 

  • Hegde GM, Anahosur KH (2001) Evaluation of fungi toxicants against fruit rot of chilli and their effect on biochemical constituents. Karnataka J Agric Sci 14(3):836–838

    Google Scholar 

  • Heinonen-Tanski H, Siltanen H, Kilpi S, Simojoki P, Rosenberg C, Mäkinen S (1986) The effect of the annual use of some pesticides on soil microorganisms, pesticide residues in soil and carrot yields. Pest Manage Sci 17:135–142

    Article  CAS  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant disease: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  Google Scholar 

  • Jaipaul SS, Dixit AK, Sharma AK (2011) Growth and yield of capsicum (Capsicum annum) and garden pea (Pisum sativum) as influenced by organic manures and biofertilizers. Indian J Agric Sci 81(7):637–642

    Google Scholar 

  • Jayraj J, Parthasarathi T, Radhakrishnan NV (2007) Characterization of a Pseudomonas fluorescens strain from tomato rhizosphere and its use for integrated management of tomato damping off. Biocontrol 52:683–702

    Article  Google Scholar 

  • Jelen H, Błaszczyk L, Chełkowski J, Rogowicz K, Strakowska J (2013) Formation of 6-n-pentyl-2H-pyran-2-one (6-PAP) and other volatiles by different Trichoderma species. Mycol Prog 13(3):589–600

    Article  Google Scholar 

  • Jnwali AD, Ojha RB, Marahatta S (2015) Role of Azotobacter in soil fertility and sustainability—a review. Adv Plant Agric Res 2(6):64–69

    Google Scholar 

  • Joshi N, Brar KS, Pannu PPS, Singh P (2007) Field efficacy of fungal and bacterial antagonists against brown spot of rice. J Biol Control 21(1):159–162

    Google Scholar 

  • Khan KS, Joergensen RG (2009) Changes in microbial biomass and P fractions in biogenic household waste compost amended with inorganic P fertilizers. Bioresour Technol 100:303–309

    Article  CAS  PubMed  Google Scholar 

  • Khan MR, Fischer S, Egan D, Doohan FM (2006) Biological control of fusarium seedling blight disease of wheat and barley. Phytopathology 96(4):386–394

    Article  CAS  PubMed  Google Scholar 

  • Khan VM, Manohar KS, Verma HP (2015) Effect of vermicompost and biofertilizer on yield, quality and economics of cowpea. Ann Agric Res 36(3):309–311

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease suppressive soils. Curr Microbiol 4:317–320

    Article  CAS  Google Scholar 

  • Kumar NR, Arasu VT, Gunasekaran P (2002) Genotyping of antifungal compounds producing plant growth-promoting rhizobacteria, Pseudomonas fluorescens. Curr Sci 82:1465–1466

    Google Scholar 

  • Kumar J, Phookan DB, Lal N, Kumar H, Sinha K, Hazarika M (2015) Effect of organic manures and biofertilizers on nutritional quality of cabbage (Brassica oleracea var. capitata). J Eco-friendly Agric 10(2):114–119

    Google Scholar 

  • Lampin N (1990) Organic farming. Farming Press Books, Ipswick, UK

    Google Scholar 

  • Lauridsen C, Jorgensen H, Halekoh U, Christensen L P (2005) Organic food and health—status and future perspectives. In: Paper presented at Researching Sustainable Systems, international scientific conference on organic agriculture, Adelaide, Australia, pp 21–23

    Google Scholar 

  • Lemanceau P, Albouvette C (1993) Suppression of fusarium wilts by fluorescent pseudomonads; mechanism and applications. Biocontrol Sci Tech 3:219–234

    Article  Google Scholar 

  • Lhuissier FGP, de Ruijter NCA, Sieberer BJ, Esseling JJ, Emons AMC (2001) Time course of cell biological events evoked in legume root hairs by Rhizobium nod factors: state of the art. Ann Bot 87:289–302

    Article  CAS  Google Scholar 

  • Magkos F, Arvaniti F, Zampelas A (2006) Organic food: buying more safety or just peace of mind? A critical review of the literature. Crit Rev Food Sci Nutr 46:23–56

    Article  PubMed  Google Scholar 

  • Maheshwari DK, Dubey RC, Sharma VK (2001) Biocontrol effects of Trichoderma virens on Macrophomina phaseolina causing Indian. J Microbiol 41(4):251–256

    Google Scholar 

  • Mal B, Mahapatra P, Mohanty S, Mishra HN (2013) Growth and yield parameters of okra (Abelmoschus esculentus) influenced by diazotrophs and chemical fertilizers. J Crop Weed 9(2):109–112

    Google Scholar 

  • Mansoor FK, Sultana V, Haque SE (2007) Enhancement of biocontrol of Pseudomonas aeruginosa and Paecilomyces lilacinus against root rot of mung- bean by a medicinal plant Launaea nudicaulis L. Pak J Bot 39:2113–2119

    Google Scholar 

  • Maurhofer M, Keel C, Haas D, Defago G (1995) Influence of plant species on disease suppression by Pseudomonas fluorescens strain CHAO with enhanced antibiotic production. Plant Pathol 44:40–50

    Article  Google Scholar 

  • Morel MA, Brana V, Castro-Sowinski S (2012) Legume crops, importance and use of bacterial inoculation to increase production. In: Goyal A (ed) Crop plant. InTech, Rijeka, pp 217–240

    Google Scholar 

  • Naby HMEA, Dawa KK, El-Gamily EE, El-Hameed SMA (2013) Effect of organic, bio and mineral fertilization on yield and quality of carrot plants. J Plant Prod 4(2):335–349

    Google Scholar 

  • Naseby DC, Way JA, Bainton NJ, Lynch JM (2001) Biocontrol of Pythium in the pea rhizosphere by antifungal metabolite producing and non-producing Pseudomonas strains. J Appl Microbiol 90:421–429

    Article  CAS  PubMed  Google Scholar 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. Plant Health Instructor. doi:10.1094/PHI-A-2006-1117-02

    Google Scholar 

  • Palaniappan SP, Annadurai K (1999) Organic farming: theory and practice. Scientific Publishers, Jodhpur, India, p 257

    Google Scholar 

  • Palomar MK, Palermo VG (2004) Microbial control of sweet potato to tuber rot caused by Lasiodiplodia theobromae using Trichoderma F17c. In: Proceedings of the 35th anniversary and annual scientific conference of PMCP, Amigo Terrace Hotel, Iloilo City, pp 102–103

    Google Scholar 

  • Pan S, Roy A, Hazra S (2001) In vitro variability of biocontrol potential among some isolates of Gliocladium virens. Adv Plant Sci 14:301–303

    Google Scholar 

  • Pandey KK, Upadhyay JP (1997) Selection of potential biocontrol agents based on production of volatile and non volatile antibiotics. Veg Sci 24(2):144–146

    Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilisation by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3:25–31

    Google Scholar 

  • Parr JF, Papendick RI, Hornick SB, Meyer RE (1992) Soil quality: attributes and relationship to alternative and sustainable agriculture. Am J Altern Agric 7:5–11

    Article  Google Scholar 

  • Paulitz TM, Belanger RR (2001) Biological control in greenhouse system. Ann Rev Phytopathol 39:103–133

    Article  CAS  Google Scholar 

  • Pawar YD, Varma LR, Joshi HN, Verma P (2014) Growth, flowering and yield parameters of garden pea (Pisum sativum L.) as influenced by different biofertilizers. In: Mishra GC (ed) Agriculture: towards a new paradigm of sustainability. Excellent Publishing House, New Delhi, pp 290–292

    Google Scholar 

  • Pradhan N, Sukla LB (2005) Solubilization of inorganic phosphates by fungi isolated from agriculture soil. Afr J Biotechnol 5:850–854

    Google Scholar 

  • Prajapati K, Modi HA (2016) Growth promoting effect of potassium solubilizing Enterobacter hormaechei (KSB-8) on cucumber (Cucumis sativus) under hydroponic conditions. Int J Adv Res Biol Sci 3:168–173

    Google Scholar 

  • Prathuangwong S, Kasem S (2003) Potential of new antagonists for controlling soybean bacterial pustule and reducing bactericide application. In: Proceedings of the sum of the 7th international conference of plant pathology, 31 Jan–6 Feb 2003, Christchurch, New Zealand, pp 2–11

    Google Scholar 

  • Radhajeyalakshmi R, Velazhahan R, Samiyappan R, Doraiswamy S (2009) Systemic induction of pathogenesis related proteins (PRs) in Alternaria solani elicitor sensitized tomato cells as resistance response. Sci Res Essays 4:685–689

    Google Scholar 

  • Rajappan K, Ramaraj B (1999) Evaluation of fungal and bacterial antagonists against Fusarium moniliforme causing wilt of cauliflower. Ann Plant Protect Sci 7:205–207

    Google Scholar 

  • Ramakrishnan K, Selvakumar G (2012) Effect of biofertilizers on enhancement of growth and yield on tomato (Lycopersicum esculentum Mill.) Int J Res Botany 2(4):20–23

    Google Scholar 

  • Ramana V, Ramakrishna M, Purushotham K, Reddy KB (2010) Effect of bio-fertilizers on growth, yield attributes and yield of French bean (Phaseolus vulgaris L.) Legume Res 33:178–183

    Google Scholar 

  • Raupach GS, Kloepper JW (1998) Mixtures of plant growth promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158–1164

    Article  CAS  PubMed  Google Scholar 

  • Ravi S, Doraiswamy S, Valluvaparidasan V, Jeyalakshmi C, Doraiswany S (1999) Effect of iocontrol agents on seed-borne Colletotrichum in French bean. Plant Dis Res 14:146–151

    Google Scholar 

  • Rembialkowska E (2003) Organic farming as a system to provide better vegetable quality. Acta Hortic 604:473–479

    Article  Google Scholar 

  • Ren H, Endo H, Hayashi T (2001) Antioxidative and antimutagenic activities and polyphenol content of pesticide-free and organically cultivated green vegetables using water-soluble chitosan as a soil modifier and leaf surface spray J Sci Food Agic 81:1426–1432

    Google Scholar 

  • Revillas JJ, Rodelas BC, Pozo C, Martonez-Toledo MV, Gonzalez-Lopez J (2000) Production of B-group vitamins by two Azotobacter strains with phenolic compounds as sole carbon source under diazotrophic and adiazotrophic conditions. J Appl Microbiol 89:486–493

    Article  CAS  PubMed  Google Scholar 

  • Rini CR, Sulochana KK (2007) Substrate evaluation for multiplication of Trichoderma spp. J Trop Agric 45(1–2):58–60

    Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Rosales AM, Thomashow L, Cook RJ, Mew TW (1995) Isolation and identification of antifungal metabolites produced by rice-associated antagonistic Pseudomonas spp. Phytopathology 85:1028–1032

    Article  CAS  Google Scholar 

  • Saeed KS, Ahmed SA, Hassan IA, Ahmed PH (2015) Effect of bio-fertilizer and chemical fertilizer on growth and yield in cucumber (Cucumis sativus) in green house condition. Pak J Biol Sci 18(3):129–134

    Article  Google Scholar 

  • Sarkar A, Mandal AR, Prasad PH, Maity TK (2010) Influence of nitrogen and biofertilizer on growth and yield of cabbage. J Crop Weed 6(2):72–73

    Google Scholar 

  • Sarma I, Phookan DB, Boruah S (2015) Influence of manures and biofertilizers on carrot (Daucus carota L.) cv. Early Nantes growth, yield and quality. J Eco-friendly Agric 10:25–27

    Google Scholar 

  • Selim ME (2015) Effectiveness of Trichoderma biotic applications in regulating the related defense genes affecting tomato early blight disease. J Plant Pathol Microbiol 6:311

    Article  Google Scholar 

  • Sen S, Rai M, Acharya R, Dasgupta S, Saha A, Acharya K (2009) Biological control of pathogens causing the Cymbidium Pseudobulb rot complex using Pseudomonas fluorescent strain BRL-1. J Plant Pathol 91:617–621

    Google Scholar 

  • Shaheen AM, Rizk FA, Sawan OM, Ghoname AA (2007) The integrated use of bio-inoculants and chemical nitrogen fertilizer on growth, yield and nutritive value of two okra (Abelmoschus Esculentus, L.) cultivars. Australian J. Basic Appl Sci 1(3):307–312

    CAS  Google Scholar 

  • Shanware AS, Kalkar SA, Trivedi MM (2014) Potassium solubilizers: occurrence, mechanism and their role as competent biofertilizers. Int J Curr Microbiol Appl Sci 3:622–629

    Google Scholar 

  • Sharma MP, Gaur A, Tanu U, Sharma OP (2004) Prospects of Arbuscular mycorrhiza in sustainable management of root and soil borne diseases of vegetable crops. In: Mukerji KG (ed) Diseases management of fruits and vegetable. Kluwer Academic Publishers, Netherlands, pp 501–539

    Chapter  Google Scholar 

  • Singh SP (2014) Effect of bio-fertilizer azospirillum on growth and yield parameters of coriander (Coriandrum sativum L.) cv. Pant Haritima. Int J Seed Spices 4:73–76

    Google Scholar 

  • Singh SP, Singh HB (2014) Effect of mixture of Trichoderma isolates on biochemical parameters in leaf of Macrophomina phaseolina infected brinjal. J Environ Biol 35:871–876

    CAS  PubMed  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Singh CK, John AS, Jaiswal D (2014a) Effect of organics on growth, yield and biochemical parameters of chilli (Capsicum annum L.) IOSR J Agric Vet Sci 7:27–32

    Article  Google Scholar 

  • Singh A, Maji S, Kumar S (2014b) Effect of biofertilizers on yield and biomolecules of anti-cancerous vegetable broccoli. Int J Bio-resource Stress Manage 5:262–268

    Article  Google Scholar 

  • Singh SB, Singh HB, Singh DK (2014c) Biocontrol potential of mixture of Trichoderma isolates on damping-off and collar rot of tomato. The Bioscan 9(3):1301–1304

    Google Scholar 

  • Singh SK, Sharma HR, Shukla A, Singh U, Thakur A (2015) Effect of biofertilizers and mulch on growth, yield and quality of tomato in mid-hills of Himachal Pradesh. Int J Farm Sci 5(3):98–110

    Google Scholar 

  • Sinha RK, Valani D, Chauhan K, Agarwal S (2014) Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms: reviving the dreams of Sir Charles Darwin. Int J Agric Health Saf 1:50–64

    Google Scholar 

  • Sivakumar T, Ravikumar M, Prakash M, Thamizhmani R (2013) Comparative effect on bacterial biofertilizers on growth and yield of green gram (Phaseolus radiata L.) and cow pea (Vigna sinensis Edhl.) Int J Curr Res Aca Rev 1(2):20–28

    CAS  Google Scholar 

  • Sivan A, Chet I (1989) The possible role of competition between Trichoderma harzianum and Fusarium oxysporum on rhizosphere colonization. Phytopathology 79:198–203

    Article  Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Ann Rev Plant Biol 62:227–250

    Article  CAS  Google Scholar 

  • Someshwar B, Bambawale OM, Tripathi AK, Ahmad I, Srivastava RC (2013) Biological management of fusarial wilt of tomato by Trichoderma spp. in Andamans. Indian J Hortic 70:397–403

    Google Scholar 

  • Strakowska J, Błaszczyk L, Chełkowski J (2014) The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus. J Basic Microbiol 54(Suppl 1):S2–13

    Article  CAS  PubMed  Google Scholar 

  • Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15:183–190

    Article  Google Scholar 

  • Sudhakar P, Chattopadhyay GN, Gangwar SK, Ghosh JK (2000) Effect of foliar application of Azotobacter, Azospirillum and Beijerinckia on leaf yield and quality of mulberry (Morus alba). J Agric Sci 134:227–234

    Article  Google Scholar 

  • Supanjani S, Habiba A, Mabooda F, Leea KD, Donnellya D, Smith DL (2006) Nod factor enhances calcium uptake by soybean. Plant Physiol Biochem 44:866–872

    Article  CAS  PubMed  Google Scholar 

  • Tauro P, Kapoor KK, Yadav KS (1986) An introduction to microbiology. New Age International (P) Limited Publishers, New Delhi, India, p 412

    Google Scholar 

  • Thakur N, Tripathi A (2015) Biological management of damping-off, buckeye rot and fusarial wilt of tomato (cv. Solan Lalima) under mid-hill conditions of Himachal Pradesh. Agric Sci 6:535–544

    Google Scholar 

  • Thomashow LS, Weller DM (1996) Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. In: Stacey G, Keen NT (eds) Plant-microbe interactions, vol 1. Chapman & Hall, New York, pp 187–236

    Chapter  Google Scholar 

  • Thrane C, Tronsmo A, Jenson DF (1997) Endo β-1,3 glucanase and cellulose from Trichoderma harzianum: biological activity against plant pathogenic spp. Eur J Plant Pathol 103:331–344

    Article  CAS  Google Scholar 

  • Verma OP, Shende ST (1993) Azotobacter a biofertilizer for vegetable crops. Biofert Newsletter 1:6–10

    Google Scholar 

  • Villanueva LM, Ibis LM, Dayao AS (2014) Potential of Bacillus subtilis against powdery mildew of garden pea. In: Reddy MS, Ilao RI, Faylon PS, Dar WD, Batchelor WD, Sudini RSH, Kumar KVK, Armanda A, Gopalkrishnan S (eds) Recent advances in biofertilizers and biofungicides (PGPR) for sustainable agriculture, Cambridge Scholars Publishing, United Kingdom, pp 31–42

    Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  • Viswanathan R, Samiyappan R (2001) Antifungal activity of chitinase produced by fluorescent pseudomonads against Colletotrichum falcatum Went. causing red rot disease in sugarcane. Microbiol Res 155:305–314

    Article  Google Scholar 

  • Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whipps JM, Sreenivasaprasad S, Muthumeenakshi S, Rogers CW, Challen MP (2008) Use of Coniothyrium minitans as a biocontrol agent and some molecular aspects of sclerotial mycoparasitism. Euro J. Plant Pathol 121:323–330

    Article  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate solubilizing fungi Adv Agron 69:99–151

    Google Scholar 

  • Winkelmann G, Drechsel H (1997) Microbial siderophores. In: Rehm HJ, Reed G (eds) Biotechnology, vol 7, 2nd edn. VCH, Weinheim, pp 199–246

    Chapter  Google Scholar 

  • Woese K, Lange D, Boess C, Bogl KW (1995) A comparison of organically and conventionally grown foods—results of a review of the relevant literature. J Sci Food Agric 74:281–293

    Article  Google Scholar 

  • Worthington V (2001) Nutritional quality of organic versus conventional fruits, vegetables and grains. J Altern Complement Med 7:161–173

    Article  CAS  PubMed  Google Scholar 

  • Yazdani M, Bahmanyar MA, Pirdashti H, Esmaili MA (2009) Effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn (Zea mays L.) Proc World Acad Sci Eng Technol 37:90–92

    Google Scholar 

  • Youssef MMA, Eissa MFM (2014) Biofertilizers and their role in management of plant parasitic nematodes. A review. E3 J Biotechnol Pharm Res 5:1–6

    Google Scholar 

  • Zahida R, Dar SB, Mudasir R, Inamullah S (2016) Productivity and quality of French bean (Phaseolus vulgaris L.) as influenced by integrating various sources of nutrients under temperate conditions of Kashmir. Int J Food Agric Vet Sci 6:15–20

    Google Scholar 

  • Zaidi NW, Singh US (2004) Development of improved technology for mass multiplication and delivery of fungal (Trichoderma) and bacterial (Pseudomonas) biocontrol agents. Indian J Mycol Plant Pathol 34:732–741

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjit Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chatterjee, R., Roy, A., Thirumdasu, R.K. (2017). Microbial Inoculants in Organic Vegetable Production: Current Perspective. In: Zaidi, A., Khan, M. (eds) Microbial Strategies for Vegetable Production. Springer, Cham. https://doi.org/10.1007/978-3-319-54401-4_1

Download citation

Publish with us

Policies and ethics