Skip to main content

Instrumentation

  • Chapter
  • First Online:
Mass Spectrometry

Abstract

  • Separating ions by m/z–basic principles

  • Mass analyzers as designed from basic principles

  • Types of mass analyzers and their modes of operation

  • Guiding, collimating, and focusing ions along a path

  • Hybrid instruments including ion mobility-mass spectrometry

  • Detectors for mass-analyzed ions

  • Vacuum generation for mass spectrometry

  • Ability to judge fitness for purpose of commercial instruments

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ligon WV Jr (1979) Molecular Analysis by Mass Spectrometry. Science 205:151–159. doi:10.1126/science.205.4402.151

    Article  CAS  Google Scholar 

  2. Brunnée C (1987) The Ideal Mass Analyzer: Fact or Fiction? Int J Mass Spectrom Ion Proc 76:125–237. doi:10.1016/0168-1176(87)80030-7

    Article  Google Scholar 

  3. Beynon JH (1960) Instruments. In: Beynon JH (ed) Mass Spectrometry and Its Applications to Organic Chemistry. Elsevier, Amsterdam

    Google Scholar 

  4. Habfast K, Aulinger F (1968) Massenspektrometrische Apparate. In: Kienitz H (ed) Massenspektrometrie. Weinheim, Verlag Chemie

    Google Scholar 

  5. Aulinger F (1968) Massenspektroskopische Geräte. In: Kienitz H (ed) Massenspektrometrie. Weinheim, Verlag Chemie

    Google Scholar 

  6. Brunnée C (1982) New Instrumentation in Mass Spectrometry. Int J Mass Spectrom Ion Phys 45:51–86. doi:10.1016/0020-7381(82)80100-9

    Article  Google Scholar 

  7. Brunnée C (1997) 50 Years of MAT in Bremen. Rapid Commun Mass Spectrom 11:694–707. doi:10.1002/(SICI)1097-0231(199704)11:6<694::AID-RCM888>3.0.CO;2-K

    Article  Google Scholar 

  8. Chapman JR, Errock GA, Race JA (1997) Science and Technology in Manchester: The Nurture of Mass Spectrometry. Rapid Commun Mass Spectrom 11:1575–1586. doi:10.1002/(SICI)1097-0231(199709)11:14<1575::AID-RCM22>3.0.CO;2-0

    Article  CAS  Google Scholar 

  9. McLuckey SA (1998) Intrumentation for mass spectrometry. In: Hesso AE, Karjalainen UP, Jalonen JE, Karjalainen EJ (eds) Advances in Mass Spectrometry: Proc 14th Intl Mass Spectrometry Conf. Tampere, Finland, 1997. Elsevier, Amsterdam

    Google Scholar 

  10. Grayson MA (ed) (2002) Measuring Mass – From Positive Rays to Proteins. ASMS and CHF, Santa Fe and Philadelphia

    Google Scholar 

  11. Jennings KR (ed) (2012) A History of European Mass Spectrometry. IM Publications, Charlton Mill

    Google Scholar 

  12. Muenzenberg G (2013) Development of Mass Spectrometers from Thomson and Aston to Present. Int J Mass Spectrom 349–350:9–18

    Article  CAS  Google Scholar 

  13. Doerr A, Finkelstein J, Jarchum I, Goodman C, Dekker B (2015) Nature Milestones: Mass Spectrometry. Nature Meth 12:1–21. www.nature.com/milestones/mass-spec

    Google Scholar 

  14. Badman ER, Cooks RG (2000) Miniature Mass Analyzers. J Mass Spectrom 35:659–671. doi:10.1002/1096-9888(200006)35:6<659::AID-JMS5>3.0.CO;2-V

    Article  CAS  Google Scholar 

  15. Le Gac S, van den Berg A (eds) (2009) Miniaturization and Mass Spectrometry. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  16. Baykut G, Franzen J (1994) Mobile Mass Spectrometry: A Decade of Field Applications. Trends Anal Chem 13:267–275. doi:10.1016/0165-9936(94)87063-2

    Article  CAS  Google Scholar 

  17. Prieto MC, Kovtoun VV, Cotter RJ (2002) Miniaturized Linear Time-of-Flight Mass Spectrometer with Pulsed Extraction. J Mass Spectrom 37:1158–1162. doi:10.1002/jms.386

    Article  CAS  Google Scholar 

  18. Arkin CR, Griffin TP, Ottens AK, Diaz JA, Follistein DW, Adams FW, Helms WR (2002) Evaluation of Small Mass Spectrometer Systems for Permanent Gas Analysis. J Am Soc Mass Spectrom 13:1004–1012. doi:10.1016/S1044-0305(02)00422-1

    Article  CAS  Google Scholar 

  19. Fenselau C, Caprioli R (2003) Mass Spectrometry in the Exploration of Mars. J Mass Spectrom 38:1–10. doi:10.1002/jms.396

    Article  CAS  Google Scholar 

  20. Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Cooks RG (2005) The Orbitrap: A New Mass Spectrometer. J Mass Spectrom 40:430–443. doi:10.1002/jms.856

    Article  CAS  Google Scholar 

  21. Wiley WC, McLaren IH (1955) Time-of-Flight Mass Spectrometer with Improved Resolution. Rev Sci Instrum 26:1150–1157. doi:10.1063/1.1715212

    Article  CAS  Google Scholar 

  22. Stephens WE (1946) A Pulsed Mass Spectrometer with Time Dispersion. Phys Rev 69:691

    CAS  Google Scholar 

  23. Cameron AE, Eggers DF (1948) An Ion “Velocitron”. Rev Sci Instrum 19:605–607. doi:10.1063/1.1741336

    Article  CAS  Google Scholar 

  24. Wolff MM, Stephens WE (1953) A Pulsed Mass Spectrometer with Time Dispersion. Rev Sci Instrum 24:616–617. doi:10.1063/1.1770801

    Article  CAS  Google Scholar 

  25. Wiley WC, McLaren IH (1997) Reprint of: Time-of-Flight Mass Spectrometer with Improved Resolution. J Mass Spectrom 32:4–11. doi:10.1002/(SICI)1096-9888(199701)32:1<1::AID-JMS467>3.0.CO;2-6

    CAS  Google Scholar 

  26. Harrington DB (1959) The time-of-flight mass spectrometer. In: Waldron JD (ed) Advances in Mass Spectrometry. Pergamon Press, Oxford

    Google Scholar 

  27. Gohlke RS, McLafferty FW (1993) Early Gas Chromatography/Mass Spectrometry. J Am Soc Mass Spectrom 4:367–371. doi:10.1016/1044-0305(93)85001-E

    Article  CAS  Google Scholar 

  28. Guilhaus M (1995) The Return of Time-of-Flight to Analytical Mass Spectrometry. Adv Mass Spectrom 13:213–226

    CAS  Google Scholar 

  29. Guilhaus M, Mlynski V, Selby D (1997) Perfect Timing: Time-of-Flight Mass Spectrometry. Rapid Commun Mass Spectrom 11:951–962. doi:10.1002/(SICI)1097-0231(19970615)11:9<951::AID-RCM785>3.0.CO;2-H

    Article  CAS  Google Scholar 

  30. Karas M, Hillenkamp F (1988) Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10000 Daltons. Anal Chem 60:2299–2301. doi:10.1021/ac00171a028

    Article  CAS  Google Scholar 

  31. Weickhardt C, Moritz F, Grotemeyer J (1997) Time-of-Flight Mass Spectrometry: State-of-the-Art in Chemical Analysis and Molecular Science. Mass Spectrom Rev 15:139–162. doi:10.1002/(SICI)1098-2787(1996)15:3<139::AID-MAS1>3.0.CO;2-J

    Article  Google Scholar 

  32. Cotter RJ (1997) Time-of-Flight Mass Spectrometry: Instrumentation and Applications in Biological Research. American Chemical Society, Washington, DC

    Google Scholar 

  33. Enke CG (1998) The Unique Capabilities of Time-of-Flight Mass Analyzers. Adv Mass Spectrom 14:197–219

    Google Scholar 

  34. Fuerstenau SD, Benner WH (1995) Molecular Weight Determination of Megadalton DNA Electrospray Ions Using Charge Detection Time-of-Flight Mass Spectrometry. Rapid Commun Mass Spectrom 9:1528–1538. doi:10.1002/rcm.1290091513

    Article  CAS  Google Scholar 

  35. Fuerstenau SD, Benner WH, Thomas JJ, Brugidou C, Bothner B, Suizdak G (2001) Mass Spectrometry of an Intact Virus. Angew Chem Int Ed 40:541–544. doi:10.1002/1521-3773(20010202)40:3<541::AID-ANIE541>3.0.CO;2-K

    Article  CAS  Google Scholar 

  36. Vestal ML (2009) Modern MALDI Time-of-Flight Mass Spectrometry. J Mass Spectrom 44:303–317. doi:10.1002/jms.1537

    Article  CAS  Google Scholar 

  37. Guilhaus M (1995) Principles and Instrumentation in Time-of-Flight Mass Spectrometry. Physical and Instrumental Concepts. J Mass Spectrom 30:1519–1532. doi:10.1002/jms.1190301102

    Article  CAS  Google Scholar 

  38. Ioanoviciu D (1995) Ion-Optical Solutions in Time-of-Flight Mass Spectrometry. Rapid Commun Mass Spectrom 9:985–997. doi:10.1002/rcm.1290091104

    Article  CAS  Google Scholar 

  39. Cotter RJ (1992) Time-of-Flight Mass Spectrometry for the Analysis of Biological Molecules. Anal Chem 64:1027A–1039A. doi:10.1021/ac00045a726

    Article  CAS  Google Scholar 

  40. Takach EJ, Hines WM, Patterson DH, Juhasz P, Falick AM, Vestal ML, Martin SA (1997) Accurate Mass Measurements Using MALDI-TOF with Delayed Extraction. J Protein Res 16:363–369. doi:10.1023/A:1026376403468

    CAS  Google Scholar 

  41. Vestal M, Juhasz P (1998) Resolution and Mass Accuracy in Matrix-Assisted Laser Desorption Ionization-Time-of-Flight. J Am Soc Mass Spectrom 9:892–911. doi:10.1016/S1044-0305(98)00069-5

    Article  CAS  Google Scholar 

  42. Vestal M, Hayden K (2007) High Performance MALDI-TOF Mass Spectrometry for Proteomics. Int J Mass Spectrom 268:83–92. doi:10.1016/j.ijms.2007.06.21

    Article  CAS  Google Scholar 

  43. Beavis RC, Chait BT (1989) Factors Affecting the Ultraviolet Laser Desorption of Proteins. Rapid Commun Mass Spectrom 3:233–237. doi:10.1002/rcm.1290030708

    Article  CAS  Google Scholar 

  44. Toyoda M, Okumura D, Ishihara M, Katakuse I (2003) Multi-Turn Time-of-Flight Mass Spectrometers With Electrostatic Sectors. J Mass Spectrom 38:1125–1142. doi:10.1002/jms.546

    Article  CAS  Google Scholar 

  45. Schuerch S, Schaer M, Boernsen KO, Schlunegger UP (1994) Enhanced Mass Resolution in Matrix-Assisted Laser Desorption/Ionization Linear Time-of-Flight Mass Spectrometry. Biol Mass Spectrom 23:695–700. doi:10.1002/bms.1200231108

    Article  CAS  Google Scholar 

  46. Mamyrin BA (1994) Laser Assisted Reflectron Time-of-Flight Mass Spectrometry. Int J Mass Spectrom Ion Proc 131:1–19. doi:10.1016/0168-1176(93)03891-O

    Article  CAS  Google Scholar 

  47. Brown RS, Lennon JJ (1995) Mass Resolution Improvement by Incorporation of Pulsed Ion Extraction in a Matrix-Assisted Laser Desorption/Ionization Linear Time-of-Flight Mass Spectrometer. Anal Chem 67:1998–2003. doi:10.1021/ac00109a015

    Article  CAS  Google Scholar 

  48. Colby SM, King TB, Reilly JP (1994) Improving the Resolution of Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry by Exploiting the Correlation Between Ion Position and Velocity. Rapid Commun Mass Spectrom 8:865–868. doi:10.1002/rcm.1290081102

    Article  CAS  Google Scholar 

  49. Whittal RM, Li L (1995) High-Resolution Matrix-Assisted Laser Desorption-Ionization in a Linear Time-of-Flight Mass Spectrometer. Anal Chem 67:1950–1954. doi:10.1021/ac00109a007

    Article  CAS  Google Scholar 

  50. Vestal ML, Juhasz P, Martin SA (1995) Delayed Extraction Matrix-Assisted Laser Desorption Time-of-Flight Mass Spectrometry. Rapid Commun Mass Spectrom 9:1044–1050. doi:10.1002/rcm.1290091115

    Article  CAS  Google Scholar 

  51. Dawson JHJ, Guilhaus M (1989) Orthogonal-Acceleration Time-of-Flight Mass Spectrometer. Rapid Commun Mass Spectrom 3:155–159. doi:10.1002/rcm.1290030511

    Article  CAS  Google Scholar 

  52. Mirgorodskaya OA, Shevchenko AA, Chernushevich IV, Dodonov AF, Miroshnikov AI (1994) Electrospray-Ionization Time-of-Flight Mass Spectrometry in Protein Chemistry. Anal Chem 66:99–107. doi:10.1021/ac00073a018

    Article  CAS  Google Scholar 

  53. Coles J, Guilhaus M (1993) Orthogonal Acceleration – A New Direction for Time-of-Flight Mass Spectrometry: Fast, Sensitive Mass Analysis for Continuous Ion Sources. Trends Anal Chem 12:203–213. doi:10.1016/0165-9936(93)80021-B

    Article  CAS  Google Scholar 

  54. Selby DS, Mlynski V, Guilhaus M (2001) A 20 KV Orthogonal Acceleration Time-of-Flight Mass Spectrometer for Matrix-Assisted Laser Desorption/Ionization. Int J Mass Spectrom 210(211):89–100. doi:10.1016/S1387-3806(01)00438-9

    Article  Google Scholar 

  55. Guilhaus M, Selby D, Mlynski V (2000) Orthogonal Acceleration Time-of-Flight Mass Spectrometry. Mass Spectrom Rev 19:65–107. doi:10.1002/(SICI)1098-2787(2000)19:2<65::AID-MAS1>3.0.CO;2-E

    Article  CAS  Google Scholar 

  56. Selditz U, Nilsson S, Barnidge D, Markides KE (1999) ESI/TOF-MS Detection for Microseparation Techniques. Chimia 53:506–510

    CAS  Google Scholar 

  57. Charles L (2008) Influence of Internal Standard Charge State on the Accuracy of Mass Measurements in Orthogonal Acceleration Time-of-Flight Mass Spectrometers. Rapid Commun Mass Spectrom 22:151–155. doi:10.1002/rcm.3347

    Article  CAS  Google Scholar 

  58. Guo C, Huang Z, Gao W, Nian H, Chen H, Dong J, Shen G, Fu J, Zhou Z (2008) A Homemade High-Resolution Orthogonal-Injection Time-of-Flight Mass Spectrometer with a Heated Capillary Inlet. Rev Sci Instrum 79:013109-1-013109/8. doi:10.1063/1.2832334

  59. Prazen BJ, Bruckner CA, Synovec RE, Kowalski BR (1999) Enhanced Chemical Analysis Using Parallel Column Gas Chromatography with Single-Detector Time-of-Flight Mass Spectrometry and Chemometric Analysis. Analytical Chemistry 71:1093–1099. doi:10.1021/ac980814m

    Article  CAS  Google Scholar 

  60. Hirsch R, Ternes TA, Bobeldijk I, Weck RA (2001) Determination of Environmentally Relevant Compounds Using Fast GC/TOF-MS. Chimia 55:19–22

    CAS  Google Scholar 

  61. Hsu CS, Green M (2001) Fragment-Free Accurate Mass Measurement of Complex Mixture Components by Gas Chromatography/Field Ionization-Orthogonal Acceleration Time-of-Flight Mass Spectrometry: An Unprecedented Capability for Mixture Analysis. Rapid Commun Mass Spectrom 15:236–239. doi:10.1002/1097-0231(20010215)15:3<236::AID-RCM197>3.0.CO;2-B

    Article  CAS  Google Scholar 

  62. Chernushevich IV (2000) Duty Cycle Improvement for a Quadrupole-Time-of-Flight Mass Spectrometer and Its Use for Precursor Ion Scans. Eur J Mass Spectrom 6:471–479. doi:10.1255/ejms.377

    Article  CAS  Google Scholar 

  63. Toyoda M (2010) Development of Multi-Turn Time-of-Flight Mass Spectrometers and Their Applications. Eur J Mass Spectrom 16:397–406. doi:10.1255/ejms.1076

    Article  CAS  Google Scholar 

  64. Toyoda M, Shimma S, Aoki J, Ishihara M (2012) Multi-Turn Time-of-Flight Mass Spectrometers. J Mass Spectrom Soc Jpn 60:87–102. doi:10.5702/massspec.12-47

    Article  CAS  Google Scholar 

  65. Ichihara T, Uchida S, Ishihara M, Katakuse I, Toyoda M (2007) Construction of a Palmtop Size Multi-Turn Time-of-Flight Mass Spectrometer “MULTUM-S”. J Mass Spectrom Soc Jpn 55:363–368. doi:10.5702/massspec.55.363

    Article  CAS  Google Scholar 

  66. Goesmann F, Rosenbauer H, Bredehoeft JH, Cabane M, Ehrenfreund P, Gautier T, Giri C, Krueger H, Le Roy L, MacDermott AJ, McKenna-Lawlor S, Meierhenrich UJ, Caro GMM, Raulin F, Roll R, Steele A, Steininger H, Sternberg R, Szopa C, Thiemann W, Ulamec S (2015) Organic Compounds on Comet 67P/Churyumov-Gerasimenko Revealed by COSAC Mass Spectrometry. Science 349:497–499. doi:10.1126/science.aab0689

    Article  CAS  Google Scholar 

  67. Satoh T, Tsuno H, Iwanaga M, Kammei Y (2006) A New Spiral Time-of-Flight Mass Spectrometer for High Mass Analysis. J Mass Spectrom Soc Jpn 54:11–17. doi:10.5702/massspec.54.11

    Article  CAS  Google Scholar 

  68. Satoh T, Sato T, Tamura J (2007) Development of a High-Performance MALDI-TOF Mass Spectrometer Utilizing a Spiral Ion Trajectory. J Am Soc Mass Spectrom 18:1318–1323. doi:10.1016/j.jasms.2007.04.010

    Article  CAS  Google Scholar 

  69. Satoh T (2009) Development of a Time-of-Flight Mass Spectrometer Utilizing a Spiral Ion Trajectory. J Mass Spectrom Soc Jpn 57:363–369. doi:10.5702/massspec.57.363

    Article  CAS  Google Scholar 

  70. Satoh T, Kubo A, Shimma S, Toyoda M (2012) Mass Spectrometry Imaging and Structural Analysis of Lipids Directly on Tissue Specimens by Using a Spiral Orbit Type Tandem Time-of-Flight Mass Spectrometer, SpiralTOF-TOF. Mass Spectrom 1:A0013. doi:10.5702/massspectrometry.A0013

    Article  CAS  Google Scholar 

  71. Satoh T, Kubo A, Hazama H, Awazu K, Toyoda M (2014) Separation of Isobaric Compounds Using a Spiral Orbit Type Time-of-Flight Mass Spectrometer, MALDI-SpiralTOF. Mass Spectrom 3:S0027-1-S0027/5. doi:10.5702/massspectrometry.S0027

    Article  CAS  Google Scholar 

  72. Sato H, Nakamura S, Teramoto K, Sato T (2014) Structural Characterization of Polymers by MALDI Spiral-TOF Mass Spectrometry Combined with Kendrick Mass Defect Analysis. J Am Soc Mass Spectrom 25:1346–1355. doi:10.1007/s13361-014-0915-y

    Article  CAS  Google Scholar 

  73. Casares A, Kholomeev A, Wollnik H (2001) Multipass Time-of-Flight Mass Spectrometers with High Resolving Powers. Int J Mass Spectrom 206:267–273. doi:10.1016/S1387-3806(00)00391-2

    Article  CAS  Google Scholar 

  74. Wollnik H, Casares A (2003) An Energy-Isochronous Multi-Pass Time-of-Flight Mass Spectrometer Consisting of Two Coaxial Electrostatic Mirrors. Int J Mass Spectrom 227:217–222. doi:10.1016/S1387-3806(03)00127-1

    Article  CAS  Google Scholar 

  75. Yavor M, Verentchikov A, Hasin J, Kozlov B, Gavrik M, Trufanov A (2008) Planar Multi-Reflecting Time-of-Flight Mass Analyzer with a Jig-Saw Ion Path. Phys Procedia 1:391–400. doi:10.1016/j.phpro.2008.07.120

    Article  CAS  Google Scholar 

  76. Klitzke CF, Corilo YE, Siek K, Binkley J, Patrick J, Eberlin MN (2012) Petroleomics by Ultrahigh-Resolution Time-of-Flight Mass Spectrometry. Energy & Fuels 26:5787–5794. doi:10.1021/ef300961c

    Article  CAS  Google Scholar 

  77. Polyakova OV, Mazur DM, Artaev VB, Lebedev AT (2016) Rapid Liquid-Liquid Extraction for the Reliable GC/MS Analysis of Volatile Priority Pollutants. Environ Chem Lett 14:251–257. doi:10.1007/s10311-015-0544-0

    Article  CAS  Google Scholar 

  78. Wolf RN, Wienholtz F, Atanasov D, Beck D, Blaum K, Borgmann C, Herfurth F, Kowalska M, Kreim S, Litvinov Y, Lunney D, Manea V, Neidherr D, Rosenbusch M, Schweikhard L, Stanja J, Zuber K (2013) ISOLTRAP’s Multi-Reflection Time-of-Flight Mass Separator/Spectrometer. Int J Mass Spectrom 349–350:123–133. doi:10.1016/j.ijms.2013.03.020

    Article  CAS  Google Scholar 

  79. Wolf RN, Eritt M, Marx G, Schweikhard L (2011) A Multi-Reflection Time-of-Flight Mass Separator for Isobaric Purification of Radioactive Ion Beams. Hyperfine Interact 199:115–122. doi:10.1007/s10751-011-0306-8

    Article  CAS  Google Scholar 

  80. Wolf RN, Marx G, Rosenbusch M, Schweikhard L (2012) Static-Mirror Ion Capture and Time Focusing for Electrostatic Ion-Beam Traps and Multi-Reflection Time-of-Flight Mass Analyzers by Use of an In-Trap Potential Lift. Int J Mass Spectrom 313:8–14. doi:10.1016/j.ijms.2011.12.006

    Article  CAS  Google Scholar 

  81. Nier AO (1991) The Development of a High Resolution Mass Spectrometer: A Reminiscence. J Am Soc Mass Spectrom 2:447–452. doi:10.1016/1044-0305(91)80029-7

    Article  CAS  Google Scholar 

  82. Nier AO (1989) Some Reminiscences of Mass Spectrometry and the Manhattan Project. J Chem Educ 66:385–388. doi:10.1021/ed066p385

    Article  CAS  Google Scholar 

  83. Nier AO (1990) Some Reflections on the Early Days of Mass Spectrometry at the University of Minnesota. Int J Mass Spectrom Ion Proc 100:1–13. doi:10.1016/0168-1176(90)85063-8

    Article  CAS  Google Scholar 

  84. Duckworth HE, Barber RC, Venkatasubramanian VS (1986) Mass Spectroscopy. Cambridge University Press, Cambridge

    Google Scholar 

  85. Cooks RG, Beynon JH, Caprioli RM (1973) Instrumentation. In: Cooks RG, Beynon JH, Caprioli RM, Lester GR (eds) Metastable Ions. Elsevier, Amsterdam

    Google Scholar 

  86. Morrison JD (1986) Ion Focusing, Mass Analysis, and Detection. In: Futrell JH (ed) Gaseous Ion Chemistry and Mass Spectrometry. Wiley, New York

    Google Scholar 

  87. Dempster AJ (1918) A New Method of Positive Ray Analysis. Phys Rev 11:316–325. doi:10.1103/PhysRev.11.316

    Article  CAS  Google Scholar 

  88. Cooks RG, Chen G, Wong P, Wollnik H (2014) Spectrometers Mass. In: Digital Encyclopedia of Applied Physics. Wiley-VCH, Weinheim. doi:10.1002/3527600434

    Google Scholar 

  89. Mattauch J, Herzog R (1934) Über Einen Neuen Massenspektrographen. Z Phys 89:786–795. doi:10.1007/BF01341392

    Article  CAS  Google Scholar 

  90. Prohaska T, Irrgeher J, Zitek A, Jakubowski N (eds) (2015) Sector Field Mass Spectrometry for Elemental and Isotopic Analysis. Royal Society of Chemistry, Cambridge

    Google Scholar 

  91. Brunnée C, Voshage H (1964) Massenspektrometrie. Karl Thiemig Verlag KG, München

    Google Scholar 

  92. Bainbridge KT, Jordan EB (1936) Mass-Spectrum Analysis. 1. The Mass Spectrograph. 2. The Existence of Isobars of Adjacent Elements. Phys Rev 50:282–296. doi:10.1103/PhysRev.50.282

    Article  CAS  Google Scholar 

  93. Johnson EG, Nier AO (1953) Angular Aberrations in Sector Shaped Electromagnetic Lenses for Focusing Beams of Charged Particles. Phys Rev 91:10–17. doi:10.1103/PhysRev.91.10

    Article  CAS  Google Scholar 

  94. Todd JFJ (1995) Recommendations for Nomenclature and Symbolism for Mass Spectroscopy Including an Appendix of Terms Used in Vacuum Technology. Int J Mass Spectrom Ion Proc 142:211–240. doi:10.1016/0168-1176(95)93811-F

    Article  CAS  Google Scholar 

  95. Morgan RP, Beynon JH, Bateman RH, Green BN (1978) The MM-ZAB-2F Double-Focussing Mass Spectrometer and MIKE Spectrometer. Int J Mass Spectrom Ion Phys 28:171–191. doi:10.1016/0020-7381(78)80124-7

    Article  CAS  Google Scholar 

  96. Hintenberger H, König LA (1957) Über Massenspektrometer mit vollständiger Doppelfokussierung zweiter Ordnung. Z Naturforsch 12:773–785. doi:10.1515/zna-1957-1004

    Google Scholar 

  97. Guilhaus M, Boyd RK, Brenton AG, Beynon JH (1985) Advantages of a Second Electric Sector on a Double-Focusing Mass Spectrometer of Reversed Configuration. Int J Mass Spectrom Ion Proc 67:209–227. doi:10.1016/0168-1176(85)80020-3

    Article  CAS  Google Scholar 

  98. Bill JC, Green BN, Lewis IAS (1983) A High Field Magnet with Fast Scanning Capabilities. Int J Mass Spectrom Ion Phys 46:147–150. doi:10.1016/0020-7381(83)80075-8

    Article  CAS  Google Scholar 

  99. Matsuda H (1985) High-Resolution High-Transmission Mass Spectrometer. Int J Mass Spectrom Ion Proc 66:209–215. doi:10.1016/0168-1176(85)83010-X

    Article  CAS  Google Scholar 

  100. Matsuda H (1989) Double-Focusing Mass Spectrometers of Short Path Length. Int J Mass Spectrom Ion Proc 93:315–321. doi:10.1016/0168-1176(89)80120-X

    Article  CAS  Google Scholar 

  101. Paul W (1990) Electromagnetic Traps for Charged and Neutral Particles (Nobel Lecture). Angew Chem Int Ed 29:739–748. doi:10.1002/anie.199007391

    Article  Google Scholar 

  102. Paul W (1993) Electromagnetic traps for charged and neutral particles. In: Nobel Prize Lectures in Physics. World Scientific Publishing, Singapore, pp 1981–1990

    Google Scholar 

  103. Paul W, Steinwedel H (1953) A New Mass Spectrometer Without Magnetic Field. Z Naturforsch 8A:448–450. doi:10.1515/zna-1953-0710

    CAS  Google Scholar 

  104. Paul W, Raether M (1955) Das elektrische Massenfilter. Z Phys 140:262–273. doi:10.1007/BF01328923

    Article  Google Scholar 

  105. Lawson G, Todd JFJ (1972) Radio-Frequency Quadrupole Mass Spectrometers. Chem Brit 8:373–380

    CAS  Google Scholar 

  106. Dawson PH (1976) Quadrupole Mass Spectrometry and Its Applications. Elsevier, New York

    Google Scholar 

  107. Dawson PH (1986) Quadrupole Mass Analyzers: Performance, Design and Some Recent Applications. Mass Spectrom Rev 5:1–37. doi:10.1002/mas.1280050102

    Article  CAS  Google Scholar 

  108. Douglas DJ (2009) Linear Quadrupoles in Mass Spectrometry. Mass Spectrom Rev 28:937–960. doi:10.1002/mas.20249

    Article  CAS  Google Scholar 

  109. Blaum K, Geppert C, Müller P, Nörtershäuser W, Otten EW, Schmitt A, Trautmann N, Wendt K, Bushaw BA (1998) Properties and Performance of a Quadrupole Mass Filter Used for Resonance Ionization Mass Spectrometry. Int J Mass Spectrom 181:67–87. doi:10.1016/S1387-3806(98)14174-x

    Article  CAS  Google Scholar 

  110. Amad MH, Houk RS (1998) High-Resolution Mass Spectrometry with a Multiple Pass Quadrupole Mass Analyzer. Anal Chem 70:4885–4889. doi:10.1021/ac980505w

    Article  CAS  Google Scholar 

  111. Liyu Y, Amad MH, Winnik WM, Schoen AE, Schweingruber H, Mylchreest I, Rudewicz PJ (2002) Investigation of an Enhanced Resolution Triple Quadrupole Mass Spectrometer for High-Throughput Liquid Chromatography/Tandem Mass Spectrometry Assays. Rapid Commun Mass Spectrom 16:2060–2066. doi:10.1002/rcm.824

    Article  CAS  Google Scholar 

  112. Denison DR (1971) Operating Parameters of a Quadrupole in a Grounded Cylindrical Housing. J Vac Sci Technol 8:266–269

    Article  CAS  Google Scholar 

  113. Dawson PH, Whetten NR (1969) Nonlinear Resonances in Quadrupole Mass Spectrometers Due to Imperfect Fields. II. Quadrupole Mass Filter and the Monopole Mass Spectrometer. Int J Mass Spectrom Ion Phys 3:1–12. doi:10.1016/0020-7381(69)80054-9

    Article  CAS  Google Scholar 

  114. Brubaker WM (1967) Comparison of Quadrupole Mass Spectrometers with Round and Hyperbolic Rods. J Vac Sci Technol 4:326

    Google Scholar 

  115. Gibson JR, Taylor S (2000) Prediction of Quadrupole Mass Filter Performance for Hyperbolic and Circular Cross Section Electrodes. Rapid Commun Mass Spectrom 14:1669–1673. doi:10.1002/1097-0231(20000930)14:18<1669::AID-RCM80>3.0.CO;2-%23

    Article  CAS  Google Scholar 

  116. Chen W, Collings BA, Douglas DJ (2000) High-Resolution Mass Spectrometry with a Quadrupole Operated in the Fourth Stability Region. Anal Chem 72:540–545. doi:10.1021/ac990815u

    Article  CAS  Google Scholar 

  117. Douglas DJ, Frank AJ, Mao D (2005) Linear Ion Traps in Mass Spectrometry. Mass Spectrom Rev 24:1–29. doi:10.1002/mas.20004

    Article  CAS  Google Scholar 

  118. Giles K, Pringle SD, Worthington KR, Little D, Wildgoose JL, Bateman RH (2004) Applications of a Traveling Wave-Based Radio-Frequency-Only Stacked Ring Ion Guide. Rapid Commun Mass Spectrom 18:2401–2414. doi:10.1002/rcm.1641

    Article  CAS  Google Scholar 

  119. Huang Y, Guan S, Kim HS, Marshall AG (1996) Ion Transport Through a Strong Magnetic Field Gradient by Radio Frequency-Only Octupole Ion Guides. Int J Mass Spectrom Ion Proc 152:121–133. doi:10.1016/0168-1176(95)04334-9

    Article  CAS  Google Scholar 

  120. Douglas DJ, French JB (1992) Collisional Focusing Effects in Radiofrequency Quadrupoles. J Am Soc Mass Spectrom 3:398–408. doi:10.1016/1044-0305(92)87067-9

    Article  CAS  Google Scholar 

  121. Tolmachev AV, Udseth HR, Smith RD (2000) Radial Stratification of Ions as a Function of Mass to Charge Ratio in Collisional Cooling Radio Frequency Multipoles Used as Ion Guides or Ion Traps. Rapid Commun Mass Spectrom 14:1907–1913. doi:10.1002/1097-0231(20001030)14:20<1907::AID-RCM111>3.0.CO;2-M

    Article  CAS  Google Scholar 

  122. Collings BA, Campbell JM, Mao D, Douglas DJ (2001) A Combined Linear Ion Trap Time-of-Flight System with Improved Performance and MSn Capabilities. Rapid Commun Mass Spectrom 15:1777–1795. doi:10.1002/rcm.440

    Article  CAS  Google Scholar 

  123. Douglas DJ (1998) Applications of Collision Dynamics in Quadrupole Mass Spectrometry. J Am Soc Mass Spectrom 9:101–113. doi:10.1016/S1044-0305(97)00246-8

    Article  CAS  Google Scholar 

  124. Thomson BA (1998) 1997 McBryde Medal Award Lecture Radio Frequency Quadrupole Ion Guides in Modern Mass Spectrometry. Can J Chem 76:499–505. doi:10.1139/v98-073

    Article  CAS  Google Scholar 

  125. Lock CM, Dyer E (1999) Characterization of High Pressure Quadrupole Collision Cells Possessing Direct Current Axial Fields. Rapid Commun Mass Spectrom 13:432–448. doi:10.1002/(SICI)1097-0231(19990315)13:5<432::AID-RCM504>3.0.CO;2-I

    Article  CAS  Google Scholar 

  126. Lock CM, Dyer E (1999) Simulation of Ion Trajectories Through a High Pressure Radio Frequency Only Quadrupole Collision Cell by SIMION 6.0. Rapid Commun Mass Spectrom 13:422–431. doi:10.1002/(SICI)1097-0231(19990315)13:5<422::AID-RCM503>3.0.CO;2-M

    Article  CAS  Google Scholar 

  127. Adlhart C, Hinderling C, Baumann H, Chen P (2000) Mechanistic Studies of Olefin Metathesis by Ruthenium Carbene Complexes Using Electrospray Ionization Tandem Mass Spectrometry. J Am Chem Soc 122:8204–8214. doi:10.1021/ja9938231

    Article  CAS  Google Scholar 

  128. Mao D, Douglas DJ (2003) H/D Exchange of Gas Phase Bradykinin Ions in a Linear Quadrupole Ion Trap. J Am Soc Mass Spectrom 14:85–94. doi:10.1016/S1044-0305(02)00818-8

    Article  CAS  Google Scholar 

  129. Hager JW (2002) A New Linear Ion Trap Mass Spectrometer. Rapid Commun Mass Spectrom 16:512–526. doi:10.1002/rcm.607

    Article  CAS  Google Scholar 

  130. Schwartz JC, Senko MW, Syka JEP (2002) A Two-Dimensional Quadrupole Ion Trap Mass Spectrometer. J Am Soc Mass Spectrom 13:659–669. doi:10.1016/S1044-0305(02)00384-7

    Article  CAS  Google Scholar 

  131. Hofstadler SA, Sannes-Lowery KA, Griffey RH (2000) Enhanced Gas-Phase Hydrogen-Deuterium Exchange of Oligonucleotide and Protein Ions Stored in an External Multipole Ion Reservoir. J Mass Spectrom 35:62–70. doi:10.1002/(SICI)1096-9888(200001)35:1<62::AID-JMS913>3.0.CO;2-9

    Article  CAS  Google Scholar 

  132. Collings BA, Scott WR, Londry FA (2003) Resonant Excitation in a Low-Pressure Linear Ion Trap. J Am Soc Mass Spectrom 14:622–634. doi:10.1016/S1044-0305(03)00202-2

    Article  CAS  Google Scholar 

  133. Aebersold R, Mann M (2003) Mass Spectrometry-Based Proteomics. Nature 422:198–207. doi:10.1038/nature01511

    Article  CAS  Google Scholar 

  134. Hopfgartner G, Husser C, Zell M (2003) Rapid Screening and Characterization of Drug Metabolites Using a New Quadrupole-Linear Ion Trap Mass Spectrometer. J Mass Spectrom 38:138–150. doi:10.1002/jms.420

    Article  CAS  Google Scholar 

  135. Hager JW (2004) Recent Trends in Mass Spectrometer Development. Anal Bioanal Chem 378:845–850. doi:10.1007/s00216-003-2287-1

    Article  CAS  Google Scholar 

  136. Koizumi H, Whitten WB, Reilly PTA (2008) Trapping of Intact, Singly-Charged, Bovine Serum Albumin Ions Injected from the Atmosphere with a 10-cm Diameter, Frequency-Adjusted Linear Quadrupole Ion Trap. J Am Soc Mass Spectrom 19:1942–1947. doi:10.1016/j.jasms.2008.08.007

    Article  CAS  Google Scholar 

  137. Welling M, Schuessler HA, Thompson RI, Walther H (1998) Ion/Molecule Reactions, Mass Spectrometry and Optical Spectroscopy in a Linear Ion Trap. Int J Mass Spectrom Ion Proc 172:95–114. doi:10.1016/S0168-1176(97)00251-6

    Article  CAS  Google Scholar 

  138. Londry FA, Hager JW (2003) Mass Selective Axial Ion Ejection from a Linear Quadrupole Ion Trap. J Am Soc Mass Spectrom 14:1130–1147. doi:10.1016/S1044-0305(03)00446-X

    Article  CAS  Google Scholar 

  139. March RE, Todd JFJ (2005) Quadrupole Ion Trap Mass Spectrometry. Wiley, Hoboken

    Book  Google Scholar 

  140. Blake TA, Ouyang Z, Wiseman JM, Takats Z, Guymon AJ, Kothari S, Cooks RG (2004) Preparative Linear Ion Trap Mass Spectrometer for Separation and Collection of Purified Proteins and Peptides in Arrays Using Ion Soft Landing. Anal Chem 76:6293–6305. doi:10.1021/ac048981b

    Article  CAS  Google Scholar 

  141. Ramanathan R (ed) (2009) Mass Spectrometry in Drug Metabolism and Pharmacokinetics. Wiley, Hoboken

    Google Scholar 

  142. Dahl DA, Delmore JE, Appelhans AD (1990) SIMION PC/PS2 Electrostatic Lens Design Program. Rev Sci Instrum 61:607–609. doi:10.1063/1.1141932

    Article  CAS  Google Scholar 

  143. Dahl DA (2000) SIMION for the Personal Computer in Reflection. Int J Mass Spectrom 200:3–25. doi:10.1016/S1387-3806(00)00305-5

    Article  CAS  Google Scholar 

  144. Magparangalan DP, Garrett TJ, Drexler DM, Yost RA (2010) Analysis of Large Peptides by MALDI Using a Linear Quadrupole Ion Trap with Mass Range Extension. Anal Chem 82:930–934. doi:10.1021/ac9021488

    Article  CAS  Google Scholar 

  145. March RE, Hughes RJ (1989) Quadrupole Storage Mass Spectrometry. Wiley, Chichester

    Google Scholar 

  146. March RE (1998) Quadrupole Ion Trap Mass Spectrometry: Theory, Simulation, Recent Developments and Applications. Rapid Commun Mass Spectrom 12:1543–1554. doi:10.1002/(SICI)1097-0231(19981030)12:20<1543::AID-RCM343>3.0.CO;2-T

    Article  CAS  Google Scholar 

  147. March RE (2000) Quadrupole Ion Trap Mass Spectrometry. A View at the Turn of the Century. Int J Mass Spectrom 200:285–312. doi:10.1016/S1387-3806(00)00345-6

    Article  CAS  Google Scholar 

  148. Stafford GC Jr (2002) Ion Trap Mass Spectrometry: A Personal Perspective. J Am Soc Mass Spectrom 13:589–596. doi:10.1016/S1044-0305(02)00385-9

    Article  CAS  Google Scholar 

  149. March RE (2009) Quadrupole Ion Traps. Mass Spectrom Rev 28:961–989. doi:10.1002/mas.20250

    Article  CAS  Google Scholar 

  150. March RE, Todd JFJ (eds) (1995) Practical Aspects of Ion Trap Mass Spectrometry Vol. 1 – Fundamentals of Ion Trap Mass Spectrometry. CRC Press, Boca Raton

    Google Scholar 

  151. March RE, Todd JFJ (eds) (1995) Practical Aspects of Ion Trap Mass Spectrometry Vol. 2 – Ion Trap Instrumentation. CRC Press, Boca Raton

    Google Scholar 

  152. March RE, Todd JFJ (eds) (1995) Practical Aspects of Ion Trap Mass Spectrometry Vol. 3 – Chemical, Environmental, and Biomedical Applications. CRC Press, Boca Raton

    Google Scholar 

  153. Yoshinari K (2000) Theoretical and Numerical Analysis of the Behavior of Ions Injected into a Quadrupole Ion Trap Mass Spectrometer. Rapid Commun Mass Spectrom 14:215–223. doi:10.1002/(SICI)1097-0231(20000229)14:4<215::AID-RCM867>3.0.CO;2-T

    Article  CAS  Google Scholar 

  154. Alheit R, Kleinadam S, Vedel F, Vedel M, Werth G (1996) Higher Order Non-Linear Resonances in a Paul Trap. Int J Mass Spectrom Ion Proc 154:155–169. doi:10.1016/0168-1176(96)04380-7

    Article  CAS  Google Scholar 

  155. Stafford GC Jr, Kelley PE, Syka JEP, Reynolds WE, Todd JFJ (1984) Recent Improvements in and Analytical Applications of Advanced Ion Trap Technology. Int J Mass Spectrom Ion Proc 60:85–98. doi:10.1016/0168-1176(84)80077-4

    Article  CAS  Google Scholar 

  156. Wu HF, Brodbelt JS (1992) Effects of Collisional Cooling on Ion Detection in a Quadrupole Ion Trap Mass Spectrometer. Int J Mass Spectrom Ion Proc 115:67–81. doi:10.1016/0168-1176(92)85032-U

    Article  CAS  Google Scholar 

  157. Plass WR, Li H, Cooks RG (2003) Theory, Simulation and Measurement of Chemical Mass Shifts in RF Quadrupole Ion Traps. Int J Mass Spectrom 228:237–267. doi:10.1016/S1387-3806(03)00216-1

    Article  CAS  Google Scholar 

  158. Wuerker RF, Shelton H, Langmuir RV (1959) Electrodynamic Containment of Charged Particles. J Appl Phys 30:342–349. doi:10.1063/1.1735165

    Article  Google Scholar 

  159. Ehlers M, Schmidt S, Lee BJ, Grotemeyer J (2000) Design and Set-Up of an External Ion Source Coupled to a Quadrupole-Ion-Trap Reflectron-Time-of-Flight Hybrid Instrument. Eur J Mass Spectrom 6:377–385. doi:10.1255/ejms.356

    Article  CAS  Google Scholar 

  160. Forbes MW, Sharifi M, Croley T, Lausevic Z, March RE (1999) Simulation of Ion Trajectories in a Quadrupole Ion Trap: A Comparison of Three Simulation Programs. J Mass Spectrom 34:1219–1239. doi:10.1002/(SICI)1096-9888(199912)34:12<1219::AID-JMS897>3.0.CO;2-L

    Article  CAS  Google Scholar 

  161. Coon JJ, Steele HA, Laipis P, Harrison WW (2002) Laser Desorption-Atmospheric Pressure Chemical Ionization: A Novel Ion Source for the Direct Coupling of Polyacrylamide Gel Electrophoresis to Mass Spectrometry. J Mass Spectrom 37:1163–1167. doi:10.1002/jms.385

    Article  CAS  Google Scholar 

  162. Nappi M, Weil C, Cleven CD, Horn LA, Wollnik H, Cooks RG (1997) Visual Representations of Simulated Three-Dimensional Ion Trajectories in an Ion Trap Mass Spectrometer. Int J Mass Spectrom Ion Proc 161:77–85. doi:10.1016/S0168-1176(96)04416-3

    Article  CAS  Google Scholar 

  163. Dawson PH, Hedman JW, Whetten NR (1969) Mass Spectrometer. Rev Sci Instrum 40:1444–1450. doi:10.1063/1.1683822

    Article  CAS  Google Scholar 

  164. Dawson PH, Whetten NR (1970) A Miniature Mass Spectrometer. Anal Chem 42:103A–108A. doi:10.1021/ac60294a799

    CAS  Google Scholar 

  165. Griffiths IW, Heesterman PJL (1990) Quadrupole Ion Store (QUISTOR) Mass Spectrometry. Int J Mass Spectrom Ion Proc 99:79–98. doi:10.1016/0168-1176(90)85022-T

    Article  CAS  Google Scholar 

  166. Griffiths IW (1990) Recent Advances in Ion-Trap Technology. Rapid Commun Mass Spectrom 4:69–73. doi:10.1002/rcm.1290040302

    Article  CAS  Google Scholar 

  167. Kelley PE, Stafford GC Jr, Syka JEP, Reynolds WE, Louris JN, Todd JFJ (1986) New Advances in the Operation of the Ion Trap Mass Spectrometer. Adv Mass Spectrom 10B:869–870

    Google Scholar 

  168. Splendore M, Lausevic M, Lausevic Z, March RE (1997) Resonant Excitation and/or Ejection of Ions Subjected to DC and RF Fields in a Commercial Quadrupole Ion Trap. Rapid Commun Mass Spectrom 11:228–233. doi:10.1002/(SICI)1097-0231(19970131)11:2<228::AID-RCM735>3.0.CO;2-C

    Article  CAS  Google Scholar 

  169. Creaser CS, Stygall JW (1999) A Comparison of Overtone and Fundamental Resonances for Mass Range Extension by Resonance Ejection in a Quadrupole Ion Trap Mass Spectrometer. Int J Mass Spectrom 190(191):145–151. doi:10.1016/S1387-3806(99)00022-6

    Article  Google Scholar 

  170. Williams JD, Cox KA, Cooks RG, McLuckey SA, Hart KJ, Goeringer DE (1994) Resonance Ejection Ion Trap Mass Spectrometry and Nonlinear Field Contributions: The Effect of Scan Direction on Mass Resolution. Anal Chem 66:725–729. doi:10.1021/ac00077a023

    Article  CAS  Google Scholar 

  171. Ding L, Sudakov M, Brancia FL, Giles R, Kumashiro S (2004) A Digital Ion Trap Mass Spectrometer Coupled with Atmospheric Pressure Ion Sources. J Mass Spectrom 39:471–484. doi:10.1002/jms.637

    Article  CAS  Google Scholar 

  172. Cooks RG, Amy JW, Bier M, Schwartz JC, Schey K (1989) New Mass Spectrometers. Adv Mass Spectrom 11A:33–52

    CAS  Google Scholar 

  173. Kaiser RE Jr, Louris JN, Amy JW, Cooks RG (1989) Extending the Mass Range of the Quadrupole Ion Trap Using Axial Modulation. Rapid Commun Mass Spectrom 3:225–229. doi:10.1002/rcm.1290030706

    Article  CAS  Google Scholar 

  174. Weber-Grabau M, Kelley P, Bradshaw S, Hoekman D, Evans S, Bishop P (1989) Recent Advances in Ion-Trap Technology. Adv Mass Spectrom 11A:152–153

    Google Scholar 

  175. Siethoff C, Wagner-Redeker W, Schäfer M, Linscheid M (1999) HPLC-MS with an Ion Trap Mass Spectrometer. Chimia 53:484–491

    CAS  Google Scholar 

  176. Eades DM, Johnson JV, Yost RA (1993) Nonlinear Resonance Effects During Ion Storage in a Quadrupole Ion Trap. J Am Soc Mass Spectrom 4:917–929. doi:10.1016/1044-0305(93)80017-S

    Article  CAS  Google Scholar 

  177. Makarov AA (1996) Resonance Ejection from the Paul Trap: A Theoretical Treatment Incorporating a Weak Octapole Field. Anal Chem 68:4257–4263. doi:10.1021/ac960653r

    Article  CAS  Google Scholar 

  178. Doroshenko VM, Cotter RJ (1997) Losses of Ions During Forward and Reverse Scans in a Quadrupole Ion Trap Mass Spectrometer and How to Reduce Them. J Am Soc Mass Spectrom 8:1141–1146. doi:10.1016/S1044-0305(97)00162-1

    Article  CAS  Google Scholar 

  179. von Busch F, Paul W (1961) Nonlinear Resonances in Electric Mass-Filters as a Consequence of Field Irregularities. Z Phys 164:588–594. doi:10.1007/BF01378433

    Article  Google Scholar 

  180. Dawson PH, Whetten NR (1969) Nonlinear Resonances in Quadrupole Mass Spectrometers Due to Imperfect Fields. I. Quadrupole Ion Trap. Int J Mass Spectrom Ion Phys 2:45–59. doi:10.1016/0020-7381(69)80005-7

    Article  CAS  Google Scholar 

  181. Wang Y, Franzen J (1994) The Non-Linear Ion Trap. Part 3. Multipole Components in Three Types of Practical Ion Trap. Int J Mass Spectrom Ion Proc 132:155–172. doi:10.1016/0168-1176(93)03913-7

    Article  CAS  Google Scholar 

  182. Franzen J (1994) The Non-Linear Ion Trap. Part 5. Nature of Non-Linear Resonances and Resonant Ion Ejection. Int J Mass Spectrom Ion Proc 130:15–40. doi:10.1016/0168-1176(93)03907-4

    Article  CAS  Google Scholar 

  183. Snyder DT, Pulliam CJ, Ouyang Z, Cooks RG (2015) Miniature and Fieldable Mass Spectrometers: Recent Advances. Anal Chem 88:2–29. doi:10.1021/acs.analchem.5b03070

    Article  CAS  Google Scholar 

  184. Pulliam CJ, Bain RM, Wiley JS, Ouyang Z, Cooks RG (2015) Mass Spectrometry in the Home and Garden. J Am Soc Mass Spectrom 26:224–230. doi:10.1007/s13361-014-1056-z

    Article  CAS  Google Scholar 

  185. Ouyang Z, Wu G, Song Y, Li H, Plass WR, Cooks RG (2004) Rectilinear Ion Trap: Concepts, Calculations, and Analytical Performance of a New Mass Analyzer. Anal Chem 76:4595–4605. doi:10.1021/ac049420n

    Article  CAS  Google Scholar 

  186. Peng WP, Goodwin MP, Nie Z, Volny M, Ouyang Z, Cooks RG (2008) Ion Soft Landing Using a Rectilinear Ion Trap Mass Spectrometer. Anal Chem 80:6640–6649. doi:10.1021/ac800929w

    Article  CAS  Google Scholar 

  187. Berton A, Traldi P, Ding L, Brancia FL (2008) Mapping the Stability Diagram of a Digital Ion Trap (DIT) Mass Spectrometer Varying the Duty Cycle of the Trapping Rectangular Waveform. J Am Soc Mass Spectrom 19:620–625. doi:10.1016/j.jasms.2007.12.012

    Article  CAS  Google Scholar 

  188. Ding L, Kumashiro S (2006) Ion Motion in the Rectangular Wave Quadrupole Field and Digital Operation Mode of a Quadrupole Ion Trap Mass Spectrometer. Rapid Commun Mass Spectrom 20:3–8. doi:10.1002/rcm.2253

    Article  CAS  Google Scholar 

  189. Li X, Jiang G, Luo C, Xu F, Wang Y, Ding L, Ding C (2009) Ion Trap Array Mass Analyzer: Structure and Performance. Anal Chem 81:4840–4846. doi:10.1021/ac900478e

    Article  CAS  Google Scholar 

  190. Brodbelt JS, Louris JN, Cooks RG (1987) Chemical Ionization in an Ion Trap Mass Spectrometer. Anal Chem 59:1278–1285. doi:10.1021/ac00136a007

    Article  CAS  Google Scholar 

  191. Doroshenko VM, Cotter RJ (1997) Injection of Externally Generated Ions into an Increasing Trapping Field of a Quadrupole Ion Trap Mass Spectrometer. J Mass Spectrom 31:602–615. doi:10.1002/(SICI)1096-9888(199706)32:6<602::AID-JMS513>3.0.CO;2-G

    Article  Google Scholar 

  192. Van Berkel GJ, Glish GL, McLuckey SA (1990) Electrospray Ionization Combined with Ion Trap Mass Spectrometry. Anal Chem 62:1284–1295. doi:10.1021/ac00212a016

    Article  Google Scholar 

  193. Wang Y, Schubert M, Ingendoh A, Franzen J (2000) Analysis of Non-Covalent Protein Complexes Up to 290 KDa Using Electrospray Ionization and Ion Trap Mass Spectrometry. Rapid Commun Mass Spectrom 14:12–17. doi:10.1002/(SICI)1097-0231(20000115)14:1<12::AID-RCM825>3.0.CO;2-7

    Article  Google Scholar 

  194. Lawrence EO, Livingston MS (1932) The Production of High-Speed Light Ions Without the Use of High Voltages. Phys Rev 40:19–35. doi:10.1103/PhysRev.40.19

    Article  CAS  Google Scholar 

  195. Comisarow MB, Marshall AG (1996) The Early Development of Fourier Transform Ion Cyclotron Resonance (FT-ICR) Spectroscopy. J Mass Spectrom 31:581–585. doi:10.1002/(SICI)1096-9888(199606)31:6<581::AID-JMS369>3.0.CO;2-1

    Article  CAS  Google Scholar 

  196. Smith LG (1951) New Magnetic Period Mass Spectrometer. Rev Sci Instrum 22:115–116. doi:10.1063/1.1745849

    Article  CAS  Google Scholar 

  197. Sommer H, Thomas HA, Hipple JA (1951) Measurement of E/M by Cyclotron Resonance. Phys Rev 82:697–702. doi:10.1103/PhysRev.82.697

    Article  CAS  Google Scholar 

  198. Baldeschwieler JD (1968) Ion Cyclotron Resonance Spectroscopy. Science 159:263–273. doi:10.1126/science.159.3812.263

    Article  CAS  Google Scholar 

  199. Assamoto B (ed) (1991) Analytical Applications of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Weinheim, VCH

    Google Scholar 

  200. Comisarow MB, Marshall AG (1974) Fourier Transform Ion Cyclotron Resonance Spectroscopy. Chem Phys Lett 25:282–283. doi:10.1016/0009-2614(74)89137-2

    Article  CAS  Google Scholar 

  201. Comisarow MB, Marshall AG (1974) Frequency-Sweep Fourier Transform Ion Cyclotron Resonance Spectroscopy. Chem Phys Lett 26:489–490. doi:10.1016/0009-2614(74)80397-0

    Article  CAS  Google Scholar 

  202. Wanczek K-P (1989) ICR Spectrometry – A Review of New Developments in Theory, Instrumentation and Applications. I. 1983–1986. Int J Mass Spectrom Ion Proc 95:1–38. doi:10.1016/0168-1176(89)83044-7

    Article  CAS  Google Scholar 

  203. Marshall AG, Grosshans PB (1991) Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: The Teenage Years. Anal Chem 63:215A–229A. doi:10.1021/ac00004a001

    Article  CAS  Google Scholar 

  204. Amster IJ (1996) Fourier Transform Mass Spectrometry. J Mass Spectrom 31:1325–1337. doi:10.1002/(SICI)1096-9888(199612)31:12<1325::AID-JMS453>3.0.CO;2-W

    Article  CAS  Google Scholar 

  205. Dienes T, Salvador JP, Schürch S, Scott JR, Yao J, Cui S, Wilkins CL (1996) Fourier Transform Mass Spectrometry-Advancing Years (1992-Mid 1996). Mass Spectrom Rev 15:163–211. doi:10.1002/(SICI)1098-2787(1996)15:3<163::AID-MAS2>3.0.CO;2-G

    Article  CAS  Google Scholar 

  206. Marshall AG (2000) Milestones in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Technique Development. Int J Mass Spectrom 200:331–356. doi:10.1016/S1387-3806(00)00324-9

    Article  CAS  Google Scholar 

  207. Smith RD (2000) Evolution of ESI-Mass Spectrometry and Fourier Transform Ion Cyclotron Resonance for Proteomics and Other Biological Applications. Int J Mass Spectrom 200:509–544. doi:10.1016/S1387-3806(00)00352-3

    Article  CAS  Google Scholar 

  208. Marshall AG, Hendrickson CL, Shi SDH (2002) Scaling MS Plateaus with High-Resolution FT-ICR-MS. Anal Chem 74:252A–259A. doi:10.1021/ac022010j

    Article  CAS  Google Scholar 

  209. Schaub TM, Hendrickson CL, Horning S, Quinn JP, Senko MW, Marshall AG (2008) High-Performance Mass Spectrometry: Fourier Transform Ion Cyclotron Resonance at 14.5 Tesla. Anal Chem 80:3985–3990. doi:10.1021/ac800386h

    Article  CAS  Google Scholar 

  210. Boldin IA, Nikolaev EN (2011) Fourier Transform Ion Cyclotron Resonance Cell with Dynamic Harmonization of the Electric Field in the Whole Volume by Shaping of the Excitation and Detection Electrode Assembly. Rapid Commun Mass Spectrom 25:122–126. doi:10.1002/rcm.4838

    Article  CAS  Google Scholar 

  211. Nikolaev EN (2015) Some Notes About FT ICR Mass Spectrometry. Int J Mass Spectrom 377:421–431. doi:10.1016/j.ijms.2014.07.051

    Article  CAS  Google Scholar 

  212. Marshall AG, Chen T (2015) 40 Years of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Int J Mass Spectrom 377:410–420. doi:10.1016/j.ijms.2014.06.034

    Article  CAS  Google Scholar 

  213. Hendrickson CL, Quinn JP, Kaiser NK, Smith DF, Blakney GT, Chen T, Marshall AG, Weisbrod CR, Beu SC (2015) 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: A National Resource for Ultrahigh Resolution Mass Analysis. J Am Soc Mass Spectrom 26:1626–1632. doi:10.1007/s13361-015-1182-2

    Article  CAS  Google Scholar 

  214. He F, Hendrickson CL, Marshall AG (2001) Baseline Mass Resolution of Peptide Isobars: A Record for Molecular Mass Resolution. Anal Chem 73:647–650. doi:10.1021/ac000973h

    Article  CAS  Google Scholar 

  215. Bossio RE, Marshall AG (2002) Baseline Resolution of Isobaric Phosphorylated and Sulfated Peptides and Nucleotides by Electrospray Ionization FT-ICR-MS: Another Step Toward MS-Based Proteomics. Anal Chem 74:1674–1679. doi:10.1021/ac0108461

    Article  CAS  Google Scholar 

  216. Nikolaev EN, Jertz R, Grigoryev A, Baykut G (2012) Fine Structure in Isotopic Peak Distributions Measured Using a Dynamically Harmonized Fourier Transform Ion Cyclotron Resonance Cell at 7 T. Anal Chem 84:2275–2283. doi:10.1021/ac202804f

    Article  CAS  Google Scholar 

  217. Popov IA, Nagornov K, Vladimirov GN, Kostyukevich YI, Nikolaev EN (2014) Twelve Million Resolving Power on 4.7 T Fourier Transform Ion Cyclotron Resonance Instrument with Dynamically Harmonized Cell-Observation of Fine Structure in Peptide Mass Spectra. J Am Soc Mass Spectrom 25:790–799. doi:10.1007/s13361-014-0846-7

    Article  CAS  Google Scholar 

  218. White FM, Marto JA, Marshall AG (1996) An External Source 7 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometer with Electrostatic Ion Guide. Rapid Commun Mass Spectrom 10:1845–1849. doi:10.1002/(SICI)1097-0231(199611)10:14<1845::AID-RCM749>3.0.CO;2-%23

    Article  CAS  Google Scholar 

  219. Marshall AG, Hendrickson CL (2002) Fourier Transform Ion Cyclotron Resonance Detection: Principles and Experimental Configurations. Int J Mass Spectrom 215:59–75. doi:10.1016/S1387-3806(01)00588-7

    Article  CAS  Google Scholar 

  220. Marshall AG, Hendrickson CL, Jackson GS (1998) Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: A Primer. Mass Spectrom Rev 17:1–35. doi:10.1002/(SICI)1098-2787(1998)17:1<1::AID-MAS1>3.0.CO;2-K

    Article  CAS  Google Scholar 

  221. Shi SDH, Drader JJ, Freitas MA, Hendrickson CL, Marshall AG (2000) Comparison and Interconversion of the Two Most Common Frequency-to-Mass Calibration Functions for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Int J Mass Spectrom 195(196):591–598. doi:10.1016/S1387-3806(99)00226-2

    Article  Google Scholar 

  222. Nikolaev EN, Gorshkov MV (1985) Dynamics of Ion Motion in an Elongated Cylindrical Cell of an ICR Spectrometer and the Shape of the Signal Registered. Int J Mass Spectrom Ion Proc 64:115–125. doi:10.1016/0168-1176(85)85003-5

    Article  CAS  Google Scholar 

  223. Pan Y, Ridge DP, Wronka J, Rockwood AL (1987) Resolution Improvement by Using Harmonic Detection in an Ion Cyclotron Resonance Mass Spectrometer. Rapid Commun Mass Spectrom 1:120–121. doi:10.1002/rcm.1290010709

    Article  CAS  Google Scholar 

  224. Nikolaev EN, Boldin IA, Jertz R, Baykut G (2011) Initial Experimental Characterization of a New Ultra-High Resolution FTICR Cell with Dynamic Harmonization. J Am Soc Mass Spectrom 22:1125–1133. doi:10.1007/s13361-011-0125-9

    Article  CAS  Google Scholar 

  225. Derome AE (1987) Modern NMR Techniques for Chemistry Research. Pergamon Press, Oxford

    Google Scholar 

  226. Guan S, Marshall AG (1996) Stored Waveform Inverse Fourier Transform (SWIFT) Ion Excitation in Trapped-Ion Mass Spectrometry: Theory and Applications. Int J Mass Spectrom Ion Proc 157(158):5–37. doi:10.1016/S0168-1176(96)04461-8

    Article  Google Scholar 

  227. Schweikhard L, Ziegler J, Bopp H, Luetzenkirchen K (1995) The Trapping Condition and a New Instability of the Ion Motion in the Ion Cyclotron Resonance Trap. Int J Mass Spectrom Ion Proc 141:77–90. doi:10.1016/0168-1176(94)04092-L

    Article  CAS  Google Scholar 

  228. Comisarow MB, Marshall AG (1976) Theory of Fourier Transform Ion Cyclotron Resonance Mass Spectroscopy. I. Fundamental Equations and Low-Pressure Line Shape. J Chem Phys 64:110–119. doi:10.1063/1.431959

    Article  CAS  Google Scholar 

  229. Comisarow MB (1978) Signal Modeling for Ion Cyclotron Resonance. J Chem Phys 69:4097–4104. doi:10.1063/1.437143

    Article  CAS  Google Scholar 

  230. Hughey CA, Rodgers RP, Marshall AG (2002) Resolution of 11,000 Compositionally Distinct Components in a Single Electrospray Ionization FT-ICR Mass Spectrum of Crude Oil. Anal Chem 74:4145–4149. doi:10.1021/ac020146b

    Article  CAS  Google Scholar 

  231. Huang Y, Li G-Z, Guan S, Marshall AG (1997) A Combined Linear Ion Trap for Mass Spectrometry. J Am Soc Mass Spectrom 8:962–969. doi:10.1016/S1044-0305(97)82945-5

    Article  CAS  Google Scholar 

  232. Guan S, Marshall AG (1995) Ion Traps for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: Principles and Design of Geometric and Electric Configurations. Int J Mass Spectrom Ion Proc 146(147):261–296. doi:10.1016/0168-1176(95)04190-V

    Article  Google Scholar 

  233. Caravatti P, Allemann M (1991) The Infinity Cell: A New Trapped-Ion Cell with Radiofrequency Covered Trapping Electrodes for FT-ICR-MS. Org Mass Spectrom 26:514–518. doi:10.1002/oms.1210260527

    Article  CAS  Google Scholar 

  234. Kostyukevich YI, Vladimirov GN, Nikolaev EN (2012) Dynamically Harmonized FT-ICR Cell with Specially Shaped Electrodes for Compensation of Inhomogeneity of the Magnetic Field. Computer Simulations of the Electric Field and Ion Motion Dynamics. J Am Soc Mass Spectrom 23:2198–2207. doi:10.1007/s13361-012-0480-1

    Article  CAS  Google Scholar 

  235. Nicolardi S, Switzar L, Deelder AM, Palmblad M, van der Burgt YEM (2015) Top-Down MALDI-In-Source Decay-FTICR Mass Spectrometry of Isotopically Resolved Proteins. Anal Chem 87:3429–3437. doi:10.1021/ac504708y

    Article  CAS  Google Scholar 

  236. Solouki T, Emmet MR, Guan S, Marshall AG (1997) Detection, Number, and Sequence Location of Sulfur-Containing Amino Acids and Disulfide Bridges in Peptides by Ultrahigh-Resolution MALDI FTICR Mass Spectrometry. Anal Chem 69:1163–1168. doi:10.1021/ac960885q

    Article  CAS  Google Scholar 

  237. Wu Z, Hendrickson CL, Rodgers RP, Marshall AG (2002) Composition of Explosives by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal Chem 74:1879–1883. doi:10.1021/ac011071z

    Article  CAS  Google Scholar 

  238. Senko MW, Hendrickson CL, Emmett MR, Shi SDH, Marshall AG (1997) External Accumulation of Ions for Enhanced Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J Am Soc Mass Spectrom 8:970–976. doi:10.1016/S1044-0305(97)00126-8

    Article  CAS  Google Scholar 

  239. Wang Y, Shi SDH, Hendrickson CL, Marshall AG (2000) Mass-Selective Ion Accumulation and Fragmentation in a Linear Octopole Ion Trap External to a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. Int J Mass Spectrom 198:113–120. doi:10.1016/S1387-3806(00)00177-9

    Article  CAS  Google Scholar 

  240. Makarov A (2000) Electrostatic Axially Harmonic Orbital Trapping: A High-Performance Technique of Mass Analysis. Anal Chem 72:1156–1162. doi:10.1021/ac991131p

    Article  CAS  Google Scholar 

  241. Scigelova M, Makarov A (2006) Orbitrap Mass Analyzer – Overview and Applications in Proteomics. Pract Proteomics 6:16–21. doi:10.1002/pmic.200600528

    Article  CAS  Google Scholar 

  242. Makarov A, Denisov E, Lange O, Horning S (2006) Dynamic Range of Mass Accuracy in LTQ Orbitrap Hybrid Mass Spectrometer. J Am Soc Mass Spectrom 17:977–982. doi:10.1016/j.jasms.2006.03.006

    Article  CAS  Google Scholar 

  243. Makarov A, Denisov E, Kholomeev A, Balschun W, Lange O, Strupat K, Horning S (2006) Performance Evaluation of a Hybrid Linear Ion Trap/Orbitrap Mass Spectrometer. Anal Chem 78:2113–2120. doi:10.1021/ac0518811

    Article  CAS  Google Scholar 

  244. Macek B, Waanders LF, Olsen JV, Mann M (2006) Top-Down Protein Sequencing and MS3 on a Hybrid Linear Quadrupole Ion Trap-Orbitrap Mass Spectrometer. Mol Cell Proteomics 5:949–958. doi:10.1074/mcp.T500042-MCP200

    Article  CAS  Google Scholar 

  245. Perry RH, Cooks RG, Noll RJ (2008) Orbitrap Mass Spectrometry: Instrumentation, Ion Motion and Applications. Mass Spectrom Rev 27:661–699. doi:10.1002/mas.20186

    Article  CAS  Google Scholar 

  246. Kingdon KH (1923) A Method for Neutralizing the Electron Space Charge by Positive Ionization at Very Low Pressures. Phys Rev 21:408–418. doi:10.1103/PhysRev.21.408

    Article  CAS  Google Scholar 

  247. Knight RD (1981) Storage of Ions from Laser-Produced Plasmas. Appl Phys Lett 38:221–223. doi:10.1063/1.92315

    Article  CAS  Google Scholar 

  248. Oksman P (1995) A Fourier Transform Time-of-Flight Mass Spectrometer. A SIMION Calculation Approach. Int J Mass Spectrom Ion Proc 141:67–76. doi:10.1016/0168-1176(94)04086-M

    Article  CAS  Google Scholar 

  249. Hardman M, Makarov AA (2003) Interfacing the Orbitrap Mass Analyzer to an Electrospray Ion Source. Anal Chem 75:1699–1705. doi:10.1021/ac0258047

    Article  CAS  Google Scholar 

  250. Olsen JV, de Godoy LMF, Li G, Macek B, Mortensen P, Pesch R, Makarov A, Lange O, Horning S, Mann M (2005) Parts Per Million Mass Accuracy on an Orbitrap Mass Spectrometer Via Lock Mass Injection into a C-Trap. Mol Cell Proteomics 4:2010–2021. doi:10.1074/mcp.T500030-MCP200

    Article  CAS  Google Scholar 

  251. Perry RH, Hu Q, Salazar GA, Cooks RG, Noll RJ (2009) Rephasing Ion Packets in the Orbitrap Mass Analyzer to Improve Resolution and Peak Shape. J Am Soc Mass Spectrom 20:1397–1404. doi:10.1016/j.jasms.2009.02.011

    Article  CAS  Google Scholar 

  252. Makarov A, Denisov E (2009) Dynamics of Ions of Intact Proteins in the Orbitrap Mass Analyzer. J Am Soc Mass Spectrom 20:1486–1495. doi:10.1016/j.jasms.2009.03.024

    Article  CAS  Google Scholar 

  253. Makarov A, Denisov E, Lange O (2009) Performance Evaluation of a High-Field Orbitrap Mass Analyzer. J Am Soc Mass Spectrom 20:1391–1396. doi:10.1016/j.jasms.2009.01.005

    Article  CAS  Google Scholar 

  254. Lebedev AT, Damoc E, Makarov AA, Samgina TY (2014) Discrimination of Leucine and Isoleucine in Peptides Sequencing with Orbitrap Fusion Mass Spectrometer. Anal Chem 86:7017–7022. doi:10.1021/ac501200h

    Article  CAS  Google Scholar 

  255. Senko MW, Remes PM, Canterbury JD, Mathur R, Song Q, Eliuk SM, Mullen C, Earley L, Hardman M, Blethrow JD, Bui H, Specht A, Lange O, Denisov E, Makarov A, Horning S, Zabrouskov V (2013) Novel Parallelized Quadrupole/Linear Ion Trap/Orbitrap Tribrid Mass Spectrometer Improving Proteome Coverage and Peptide Identification Rates. Anal Chem 85:11710–11714. doi:10.1021/ac403115c

    Article  CAS  Google Scholar 

  256. Amy JW, Baitinger WE, Cooks RG (1990) Building Mass Spectrometers and a Philosophy of Research. J Am Soc Mass Spectrom 1:119–128. doi:10.1016/1044-0305(90)85047-P

    Article  CAS  Google Scholar 

  257. Futrell JH (2000) Development of Tandem Mass Spectrometry. One Perspective. Int J Mass Spectrom 200:495–508. doi:10.1016/S1387-3806(00)00353-5

    Article  CAS  Google Scholar 

  258. McLuckey SA, Glish GL, Cooks RG (1981) Kinetic Energy Effects in Mass Spectrometry/Mass Spectrometry Using a Sector/Quadrupole Tandem Instrument. Int J Mass Spectrom Ion Phys 39:219–230. doi:10.1016/0020-7381(81)80034-4

    Article  CAS  Google Scholar 

  259. Glish GL, McLuckey SA, Ridley TY, Cooks RG (1982) A New “Hybrid” Sector/Quadrupole Mass Spectrometer for Mass Spectrometry/Mass Spectrometry. Int J Mass Spectrom Ion Phys 41:157–177. doi:10.1016/0020-7381(82)85032-8

    Article  CAS  Google Scholar 

  260. Bradley CD, Curtis JM, Derrick PJ, Wright B (1992) Tandem Mass Spectrometry of Peptides Using a Magnetic Sector/Quadrupole Hybrid-the Case for Higher Collision Energy and Higher Radio-Frequency Power. Anal Chem 64:2628–2635. doi:10.1021/ac00045a028

    Article  CAS  Google Scholar 

  261. Schoen AE, Amy JW, Ciupek JD, Cooks RG, Dobberstein P, Jung G (1985) A Hybrid BEQQ Mass Spectrometer. Int J Mass Spectrom Ion Proc 65:125–140. doi:10.1016/0168-1176(85)85059-X

    Article  CAS  Google Scholar 

  262. Ciupek JD, Amy JW, Cooks RG, Schoen AE (1985) Performance of a Hybrid Mass Spectrometer. Int J Mass Spectrom Ion Proc 65:141–157. doi:10.1016/0168-1176(85)85060-6

    Article  CAS  Google Scholar 

  263. Louris JN, Wright LG, Cooks RG, Schoen AE (1985) New Scan Modes Accessed with a Hybrid Mass Spectrometer. Anal Chem 57:2918–2924. doi:10.1021/ac00291a039

    Article  CAS  Google Scholar 

  264. Loo JA, Münster H (1999) Magnetic Sector-Ion Trap Mass Spectrometry with Electrospray Ionization for High Sensitivity Peptide Sequencing. Rapid Commun Mass Spectrom 13:54–60. doi:10.1002/(SICI)1097-0231(19990115)13:1<54::AID-RCM450>3.0.CO;2-Y

    Article  CAS  Google Scholar 

  265. Strobel FH, Solouki T, White MA, Russell DH (1991) Detection of Femtomole and Sub-Femtomole Levels of Peptides by Tandem Magnetic Sector/Reflectron Time-of-Flight Mass Spectrometry and Matrix-Assisted Laser Desorption Ionization. J Am Soc Mass Spectrom 2:91–94. doi:10.1016/1044-0305(91)80066-G

    Article  CAS  Google Scholar 

  266. Bateman RH, Green MR, Scott G, Clayton E (1995) A Combined Magnetic Sector-Time-of-Flight Mass Spectrometer for Structural Determination Studies by Tandem Mass Spectrometry. Rapid Commun Mass Spectrom 9:1227–1233. doi:10.1002/rcm.1290091302

    Article  CAS  Google Scholar 

  267. Aicher KP, Müller M, Wilhelm U, Grotemeyer J (1995) Design and Setup of an Ion Trap-Reflectron-Time-of-Flight Mass Spectrometer. Eur Mass Spectrom 1:331–340. doi:10.1255/ejms.117

    Article  CAS  Google Scholar 

  268. Wilhelm U, Aicher KP, Grotemeyer J (1996) Ion Storage Combined with Reflectron Time-of-Flight Mass Spectrometry: Ion Cloud Motions As a Result of Jet-Cooled Molecules. Int J Mass Spectrom Ion Proc 152:111–120. doi:10.1016/0168-1176(95)04339-X

    Article  CAS  Google Scholar 

  269. Morris HR, Paxton T, Dell A, Langhorne J, Berg M, Bordoli RS, Hoyes J, Bateman RH (1996) High Sensitivity Collisionally-Activated Decomposition Tandem Mass Spectrometry on a Novel Quadrupole/Orthogonal-Acceleration Time-of-Flight Mass Spectrometer. Rapid Commun Mass Spectrom 10:889–896. doi:10.1002/(SICI)1097-0231(19960610)10:8<889::AID-RCM615>3.0.CO;2-F

    Article  CAS  Google Scholar 

  270. Shevchenko A, Chernushevich IV, Ens W, Standing KG, Thompson B, Wilm M, Mann M (1997) Rapid 'De Novo' Peptide Sequencing by a Combination of Nanoelectrospray, Isotopic Labeling and a Quadrupole/Time-of-Flight Mass Spectrometer. Rapid Commun Mass Spectrom 11:1015–1024. doi:10.1002/(SICI)1097-0231(19970615)11:9<1015::AID-RCM958>3.0.CO;2-H

    Article  CAS  Google Scholar 

  271. Hopfgartner G, Chernushevich IV, Covey T, Plomley JB, Bonner R (1999) Exact Mass Measurement of Product Ions for the Structural Elucidation of Drug Metabolites with a Tandem Quadrupole Orthogonal-Acceleration Time-of-Flight Mass Spectrometer. J Am Soc Mass Spectrom 10:1305–1314. doi:10.1016/S1044-0305(99)00097-5

    Article  CAS  Google Scholar 

  272. Borsdorf H, Eiceman GA (2006) Ion Mobility Spectrometry: Principles and Applications. Appl Spectrosc Rev 41:323–375. doi:10.1080/05704920600663469

    Article  CAS  Google Scholar 

  273. Eiceman GA, Karpas Z, Hill HH Jr (2014) Ion Mobility Spectrometry. CRC Press, Boca Raton

    Google Scholar 

  274. Collins DC, Lee ML (2002) Developments in Ion Mobility Spectrometry-Mass Spectrometry. Anal Bioanal Chem 372:66–73. doi:10.1007/s00216-001-1195-5

    Article  CAS  Google Scholar 

  275. Mukhopadhyay R (2008) IMS/MS: Its Time Has Come. Anal Chem 80:7918–7920. doi:10.1021/ac8018608

    Article  CAS  Google Scholar 

  276. Bohrer BC, Merenbloom SI, Koeniger SL, Hilderbrand AE, Clemmer DE (2008) Biomolecule Analysis by Ion Mobility Spectrometry. Annu Rev Anal Chem 1:293–327. doi:10.1146/annurev.anchem.1.031207.113001

    Article  CAS  Google Scholar 

  277. Karasek FW (1970) Drift-Mass Spectrometer. Res Developm 21:25–27

    CAS  Google Scholar 

  278. Karasek FW (1970) Plasma Chromatograph. Res Developm 21:34–37

    CAS  Google Scholar 

  279. Karasek FW, Cohen MJ, Carroll DI (1971) Trace Studies of Alcohols in the Plasma Chromatograph–Mass Spectrometer. J Chromatogr Sci 9:390–392. doi:10.1093/chromsci/9.7.390

    Article  CAS  Google Scholar 

  280. Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH Jr (2008) Ion Mobility-Mass Spectrometry. J Mass Spectrom 43:1–22. doi:10.1002/jms.1383

    Article  CAS  Google Scholar 

  281. Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE, Thalassinos K, Bateman RH, Bowers MT, Scrivens JH (2007) An Investigation of the Mobility Separation of Some Peptide and Protein Ions Using a New Hybrid Quadrupole/Travelling Wave IMS/Oa-ToF Instrument. Int J Mass Spectrom 261:1–12. doi:10.1016/j.ijms.2006.07.021

    Article  CAS  Google Scholar 

  282. Guevremont R (2004) High-Field Asymmetric Waveform Ion Mobility Spectrometry: A New Tool for Mass Spectrometry. J Chromatogr A 1058:3–19. doi:10.1016/S0021-9673(04)01478-5

    Article  CAS  Google Scholar 

  283. Kolakowski BM, Mester Z (2007) Review of Applications of High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) and Differential Mobility Spectrometry (DMS). Analyst 132:842–864. doi:10.1039/B706039D

    Article  CAS  Google Scholar 

  284. Harvey SR, Macphee CE, Barran PE (2011) Ion Mobility Mass Spectrometry for Peptide Analysis. Methods 54:454–461. doi:10.1016/j.ymeth.2011.05.004

    Article  CAS  Google Scholar 

  285. Platzner IT, Habfast K, Walder AJ, Goetz A, Platzner IT (eds) (1997) Modern Isotope Ratio Mass Spectrometry. Wiley, Chichester

    Google Scholar 

  286. Stanton HE, Chupka WA, Inghram MG (1956) Electron Multipliers in Mass Spectrometry; Effect of Molecular Structure. Rev Sci Instrum 27:109. doi:10.1063/1.1715477

    Article  CAS  Google Scholar 

  287. Weaver PJ, Laures AMF, Wolff JC (2007) Investigation of the Advanced Functionalities of a Hybrid Quadrupole Orthogonal Acceleration Time-of-Flight Mass Spectrometer. Rapid Commun Mass Spectrom 21:2415–2421. doi:10.1002/rcm.3052

    Article  CAS  Google Scholar 

  288. Colombo M, Sirtori FR, Rizzo V (2004) A Fully Automated Method for Accurate Mass Determination Using High-Performance Liquid Chromatography with a Quadrupole/Orthogonal Acceleration Time-of-Flight Mass Spectrometer. Rapid Commun Mass Spectrom 18:511–517. doi:10.1002/rcm.1368

    Article  CAS  Google Scholar 

  289. Allen JS (1947) An Improved Electron-Multiplier Particle Counter. Rev Sci Instrum 18:739–749. doi:10.1063/1.1740838

    Article  CAS  Google Scholar 

  290. Wang GH, Aberth W, Falick AM (1986) Evidence Concerning the Identity of Secondary Particles in Post-Acceleration Detectors. Int J Mass Spectrom Ion Proc 69:233–237. doi:10.1016/0168-1176(86)87037-9

    Article  CAS  Google Scholar 

  291. Busch KL (2000) The Electron Multiplier. Spectroscopy 15:28–33

    CAS  Google Scholar 

  292. Schröder E (1991) Massenspektrometrie – Begriffe und Definitionen. Springer, Heidelberg

    Google Scholar 

  293. Boerboom AJH (1991) Array Detection of Mass Spectra, a Comparison with Conventional Detection Methods. Org Mass Spectrom 26:929–935. doi:10.1002/oms.1210261103

    Article  CAS  Google Scholar 

  294. Kurz EA (1979) Channel Electron Multipliers. Am Laboratory 11:67–82

    CAS  Google Scholar 

  295. Wiza JL (1979) Microchannel Plate Detectors. Nucl Instrum Methods 162:587–601. doi:10.1016/0029-554X(79)90734-1

    Article  CAS  Google Scholar 

  296. Laprade BN, Labich RJ (1994) Microchannel Plate-Based Detectors in Mass Spectrometry. Spectroscopy 9:26–30

    CAS  Google Scholar 

  297. Alexandrov ML, Gall LN, Krasnov NV, Lokshin LR, Chuprikov AV (1990) Discrimination Effects in Inorganic Ion-Cluster Detection by Secondary-Electron Multiplier in Mass Spectrometry Experiments. Rapid Commun Mass Spectrom 4:9–12. doi:10.1002/rcm.1290040104

    Article  CAS  Google Scholar 

  298. Geno PW, Macfarlane RD (1989) Secondary Electron Emission Induced by Impact of Low-Velocity Molecular Ions on a Microchannel Plate. Int J Mass Spectrom Ion Proc 92:195–210. doi:10.1016/0168-1176(89)83028-9

    Article  CAS  Google Scholar 

  299. Hedin H, Håkansson K, Sundqvist BUR (1987) On the Detection of Large Organic Ions by Secondary Electron Production. Int J Mass Spectrom Ion Proc 75:275–289. doi:10.1016/0168-1176(87)83041-0

    Article  CAS  Google Scholar 

  300. Hill JA, Biller JE, Martin SA, Biemann K, Yoshidome K, Sato K (1989) Design Considerations, Calibration and Applications of an Array Detector for a Four-Sector Tandem Mass Spectrometer. Int J Mass Spectrom Ion Proc 92:211–230. doi:10.1016/0168-1176(89)83029-0

    Article  CAS  Google Scholar 

  301. Birkinshaw K (1997) Fundamentals of Focal Plane Detectors. J Mass Spectrom 32:795–806. doi:10.1002/(SICI)1096-9888(199708)32:8<795::AID-JMS540>3.0.CO;2-U

    Article  CAS  Google Scholar 

  302. Cottrell JS, Evans S (1987) The Application of a Multichannel Electro-Optical Detection System to the Analysis of Large Molecules by FAB Mass Spectrometry. Rapid Commun Mass Spectrom 1:1–2. doi:10.1002/rcm.1290010103

    Article  CAS  Google Scholar 

  303. Cottrell JS, Evans S (1987) Characteristics of a Multichannel Electrooptical Detection System and Its Application to the Analysis of Large Molecules by Fast Atom Bombardment Mass Spectrometry. Anal Chem 59:1990–1995. doi:10.1021/ac00142a021

    Article  CAS  Google Scholar 

  304. Birkinshaw K, Langstaff DP (1996) The Ideal Detector. Rapid Commun Mass Spectrom 10:1675–1677. doi:10.1002/(SICI)1097-0231(199610)10:13<1675::AID-RCM712>3.0.CO;2-S

    Article  CAS  Google Scholar 

  305. Hucknall DJ (1991) Vacuum Technology and Applications. Butterworth-Heinemann, Oxford

    Google Scholar 

  306. Pupp W, Hartmann HK (1991) Vakuum-Technik – Grundlagen und Anwendungen. Fachbuchverlag Leipzig, Leipzig

    Google Scholar 

  307. Wutz M, Adam H, Walcher W (1992) Theory and Practice of Vacuum Technology. Vieweg, Braunschweig/Wiesbaden

    Google Scholar 

  308. Lafferty JM (ed) (1998) Foundations of Vacuum Science and Technology. Wiley, New York

    Google Scholar 

  309. Umrath W (ed) (2001) Leybold Vacuum Products and Reference Book. Leybold Vacuum GmbH, Köln

    Google Scholar 

  310. Busch KL (2000) Vacuum in Mass Spectroscopy. Nothing Can Surprise You. Spectroscopy 15:22–25

    Google Scholar 

  311. Busch KL (2001) High-Vacuum Pumps in Mass Spectrometers. Spectroscopy 16:14–18

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gross, J.H. (2017). Instrumentation. In: Mass Spectrometry. Springer, Cham. https://doi.org/10.1007/978-3-319-54398-7_4

Download citation

Publish with us

Policies and ethics