Skip to main content

Principles of Ionization and Ion Dissociation

  • Chapter
  • First Online:
Mass Spectrometry

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Porter CJ, Beynon JH, Ast T (1981) The Modern Mass Spectrometer. A Complete Chemical Laboratory. Org Mass Spectrom 16:101–114. doi:10.1002/oms.1210160302

    Article  CAS  Google Scholar 

  2. Schwarz H (1991) The Chemistry of Naked Molecules or the Mass Spectrometer as a Laboratory. Chem Unserer Zeit 25:268–278. doi:10.1002/ciuz.19910250507

    Article  CAS  Google Scholar 

  3. Kazakevich Y (1996) Citation used by permission. hplc.chem.shu.edu; Seton Hall University, South Orange, NJ

    Google Scholar 

  4. Hiraoka K (ed) (2013) Fundamentals of Mass Spectrometry. Springer, New York

    Google Scholar 

  5. Cooks RG, Beynon JH, Caprioli RM (1973) Metastable Ions. Elsevier, Amsterdam

    Google Scholar 

  6. Levsen K (1978) Fundamental Aspects of Organic Mass Spectrometry. Weinheim, Verlag Chemie

    Google Scholar 

  7. Franklin JL (1979) Energy distributions in the unimolecular decomposition of ions. In: Bowers MT (ed) Gas Phase Ion Chemistry. Academic Press, New York

    Google Scholar 

  8. Beynon JH, Gilbert JR (1979) Energetics and mechanisms of unimolecular reactions of positive ions: mass spectrometric methods. In: Bowers MT (ed) Gas Phase Ion Chemistry. Academic Press, New York

    Google Scholar 

  9. Vogel P (1985) The study of carbocations in the gas phase. In: Carbocation Chemistry. Elsevier, Amsterdam

    Google Scholar 

  10. Holmes JL (1985) Assigning Structures to Ions in the Gas Phase. Org Mass Spectrom 20:169–183. doi:10.1002/oms.1210200302

    Article  CAS  Google Scholar 

  11. Lorquet JC (1981) Basic Questions in Mass Spectrometry. Org Mass Spectrom 16:469–481. doi:10.1002/oms.1210161102

    Article  CAS  Google Scholar 

  12. Lorquet JC (2000) Landmarks in the Theory of Mass Spectra. Int J Mass Spectrom 200:43–56. doi:10.1016/S1387-3806(00)00303-1

    Article  CAS  Google Scholar 

  13. Märk TD (1982) Fundamental Aspects of Electron Impact Ionization. Int J Mass Spectrom Ion Phys 45:125–145. doi:10.1016/0020-7381(82)85046-8

    Article  Google Scholar 

  14. Märk TD (1986) Electron impact ionization. In: Futrell JH (ed) Gaseous Ion Chemistry and Mass Spectrometry. Wiley, New York

    Google Scholar 

  15. Wolkenstein K, Gross JH, Oeser T, Schöler HF (2002) Spectroscopic Characterization and Crystal Structure of the 1,2,3,4,5,6-Hexahydrophenanthro[1,10,9,8-opqra]Perylene. Tetrahedron Lett 43:1653–1655. doi:10.1016/S0040-4039(02)00085-0

    Article  CAS  Google Scholar 

  16. Harrison AG (1992) Fundamentals of gas phase ion chemistry. In: Chemical Ionization Mass Spectrometry. CRC Press, Boca Raton

    Google Scholar 

  17. De Wall R, Neuert H (1977) The Formation of Negative Ions from Electron Impact with Tungsten Hexafluoride. Z Naturforsch A 32:968–971. doi:10.1515/zna-1977-0910

    Article  Google Scholar 

  18. Schröder E (1991) Massenspektrometrie – Begriffe und Definitionen. Springer, Heidelberg

    Google Scholar 

  19. Jones EG, Harrison AG (1970) Study of Penning Ionization Reactions Using a Single-Source Mass Spectrometer. Int J Mass Spectrom Ion Phys 5:137–156. doi:10.1016/0020-7381(70)87012-7

    Article  CAS  Google Scholar 

  20. Penning FM (1927) Über Ionisation durch metastabile Atome. Naturwissenschaften 15:818. doi:10.1007/BF01505431

    Article  CAS  Google Scholar 

  21. Hornbeck JA, Molnar JP (1951) Mass-Spectrometric Studies of Molecular Ions in the Noble Gases. Phys Rev 84:621–625. doi:10.1103/PhysRev.84.621

    Article  CAS  Google Scholar 

  22. Faubert D, Paul GJC, Giroux J, Betrand MJ (1993) Selective Fragmentation and Ionization of Organic Compounds Using an Energy-Tunable Rare-Gas Metastable Beam Source. Int J Mass Spectrom Ion Proc 124:69–77. doi:10.1016/0168-1176(93)85021-5

    Article  CAS  Google Scholar 

  23. Svec HJ, Junk GA (1967) Electron-Impact Studies of Substituted Alkanes. J Am Chem Soc 89:790–796. doi:10.1021/ja00980a010

    Article  CAS  Google Scholar 

  24. Honig RE (1948) Ionization Potentials of Some Hydrocarbon Series. J Chem Phys 16:105–112. doi:10.1063/1.1746786

    Article  CAS  Google Scholar 

  25. http://webbook.nist.gov/

  26. Baldwin M, Kirkien-Konasiewicz A, Loudon AG, Maccoll A, Smith D (1966) Localized or Delocalized Charges in Molecule-Ions? Chem Commun:574. doi:10.1039/C19660000574

  27. McLafferty FW (1966) Generalized Mechanism for Mass Spectral Reactions. Chem Commun:78–80. doi:10.1039/C19660000078

  28. Wellington CA, Khowaiter SH (1978) Charge Distributions in Molecules and Ions: MINDO 3 Calculations. An Alternative of the Charge Localization Concept in Mass Spectrometry. Tetrahedron 34:2183–2190. doi:10.1016/0040-4020(78)89024-3

    Article  CAS  Google Scholar 

  29. Baldwin MA, Welham KJ (1987) Charge Localization by Molecular Orbital Calculations. I. Urea and Thiourea. Rapid Commun Mass Spectrom 1:13–15. doi:10.1002/rcm.1290010110

    Article  CAS  Google Scholar 

  30. Baldwin MA, Welham KJ (1988) Charge Localization by Molecular Orbital Calculations. II. Formamide, Thioformamide and N-Methylated Analogs. Org Mass Spectrom 23:425–428. doi:10.1002/oms.1210230522

    Article  CAS  Google Scholar 

  31. Weinkauf R, Lehrer F, Schlag EW, Metsala A (2000) Investigation of Charge Localization and Charge Delocalization in Model Molecules by Multiphoton Ionization Photoelectron Spectroscopy and DFT Calculations. Faraday Discuss 115:363–381. doi:10.1039/B001092H

    Article  CAS  Google Scholar 

  32. Cone C, Dewar MJS, Landman D (1977) Gaseous Ions. 1. MINDO/3 Study of the Rearrangement of Benzyl Cation to Tropylium. J Am Chem Soc 99:372–376. doi:10.1021/ja00444a011

    Article  CAS  Google Scholar 

  33. Born M, Oppenheimer JR (1927) Zur Quantentheorie der Molekeln. Ann Phys 84:457–484. doi:10.1002/andp.19273892002

    Article  CAS  Google Scholar 

  34. Seiler R (1969) A Remark on the Born-Oppenheimer Approximation. Int J Quantum Chem 3:25–32. doi:10.1002/qua.560030106

    Article  CAS  Google Scholar 

  35. Lipson RH (2009) Ultraviolet and Visible Absorption Spectroscopy. In: Andrews DL (ed) Encyclopedia of Applied Spectroscopy. Wiley-VCH, Weinheim

    Google Scholar 

  36. Franck J (1925) Elementary Processes of Photochemical Reactions. Trans Faraday Soc 21:536–542. doi:10.1039/TF9262100536

    Article  Google Scholar 

  37. Condon EU (1926) Theory of Intensity Distribution in Band Systems. Phys Rev 28:1182–1201. doi:10.1103/PhysRev.28.1182

    Article  CAS  Google Scholar 

  38. Dunn GH (1966) Franck-Condon Factors for the Ionization of H2 and D2. J Chem Phys 44:2592–2594. doi:10.1063/1.1727097

    Article  CAS  Google Scholar 

  39. Märk TD (1982) Fundamental Aspects of Electron Impact Ionization. Int J Mass Spectrom Ion Phys 45:125–145. doi:10.1016/0020-7381(82)80103-4

    Article  Google Scholar 

  40. Märk TD (1986) Electron impact ionization. In: Futrell JH (ed) Gaseous Ion Chemistry and Mass Spectrometry. John Wiley and Sons, New York

    Google Scholar 

  41. McLafferty FW, Wachs T, Lifshitz C, Innorta G, Irving P (1970) Substituent Effects in Unimolecular Ion Decompositions. XV. Mechanistic Interpretations and the Quasi-Equilibrium Theory. J Am Chem Soc 92:6867–6880. doi:10.1021/ja00726a025

    Article  CAS  Google Scholar 

  42. Egger KW, Cocks AT (1973) Homopolar- and Heteropolar Bond Dissociation Energies and Heats of Formation of Radicals and Ions in the Gas Phase. I. Data on Organic Molecules. Helv Chim Acta 56:1516–1536. doi:10.1002/hlca.19730560509

    Article  CAS  Google Scholar 

  43. Lossing FP, Semeluk GP (1970) Free Radicals by Mass Spectrometry. XLII. Ionization Potentials and Ionic Heats of Formation for C1–C4 Alkyl Radicals. Can J Chem 48:955–965. doi:10.1139/v70-157

    Article  CAS  Google Scholar 

  44. Lossing FP, Holmes JL (1984) Stabilization Energy and Ion Size in Carbocations in the Gas Phase. J Am Chem Soc 106:6917–6920. doi:10.1021/ja00335a008

    Article  CAS  Google Scholar 

  45. Cox JD, Pilcher G (1970) Thermochemistry of Organic and Organometallic Compounds. Academic Press, London

    Google Scholar 

  46. Chatham H, Hils D, Robertson R, Gallagher A (1984) Total and Partial Electron Collisional Ionization Cross Sections for Methane, Ethane, Silane, and Disilane. J Chem Phys 81:1770–1777. doi:10.1063/1.447848

    Article  CAS  Google Scholar 

  47. Wahrhaftig AL (1959) Ion dissociations in the mass spectrometer. In: Waldron JD (ed) Advances in Mass Spectrometry. Pergamon Press, Oxford

    Google Scholar 

  48. Wahrhaftig AL (1986) Unimolecular dissociations of gaseous ions. In: Futrell JH (ed) Gaseous Ion Chemistry and Mass Spectrometry. Wiley, New York

    Google Scholar 

  49. Rosenstock HM, Krauss M (1963) Quasi-equilibrium theory of mass spectra. In: McLafferty FW (ed) Mass Spectrometry of Organic Ions. Academic Press, London

    Google Scholar 

  50. Bohme DK, Mackay GI (1981) Bridging the Gap Between the Gas Phase and Solution: Transition in the Kinetics of Nucleophilic Displacement Reactions. J Am Chem Soc 103:978–979. doi:10.1021/ja00394a062

    Article  CAS  Google Scholar 

  51. Speranza M (1992) Gas Phase Ion Chemistry Versus Solution Chemistry. Int J Mass Spectrom Ion Proc 118(119):395–447. doi:10.1016/0168-1176(92)85071-7

    Article  Google Scholar 

  52. Rosenstock HM, Wallenstein MB, Wahrhaftig AL, Eyring H (1952) Absolute Rate Theory for Isolated Systems and the Mass Spectra of Polyatomic Molecules. Proc Natl Acad Sci USA 38:667–678. doi:10.1073/pnas.38.8.667

    Article  CAS  Google Scholar 

  53. McAdoo DJ, Bente PFI, Gross ML, McLafferty FW (1974) Metastable Ion Characteristics. XXIII. Internal Energy of Product Ions Formed in Mass Spectral Reactions. Org Mass Spectrom 9:525–535. doi:10.1002/oms.1210090510

    Article  CAS  Google Scholar 

  54. Meier K, Seibl J (1974) Measurement of Ion Residence Times in a Commercial Electron Impact Ion Source. Int J Mass Spectrom Ion Phys 14:99–106. doi:10.1016/0020-7381(74)80065-3

    Article  CAS  Google Scholar 

  55. Chupka WA (1959) Effect of Unimolecular Decay Kinetics on the Interpretation of Appearance Potentials. J Chem Phys 30:191–211. doi:10.1063/1.1729875

    Article  CAS  Google Scholar 

  56. Holmes JL, Terlouw JK (1980) The Scope of Metastable Peak Shape Observations. Org Mass Spectrom 15:383–396. doi:10.1002/oms.1210150802

    Article  CAS  Google Scholar 

  57. Williams DH (1977) A Transition State Probe. Acc Chem Res 10:280–286. doi:10.1021/ar50116a002

    Article  CAS  Google Scholar 

  58. Williams DH, Hvistendahl G (1974) Kinetic Energy Release in Relation to Symmetry-Forbidden Reactions. J Am Chem Soc 96:6753–6755. doi:10.1021/ja00828a034

    Article  CAS  Google Scholar 

  59. Williams DH, Hvistendahl G (1974) Kinetic Energy Release as a Mechanistic Probe. The Role of Orbital Symmetry. J Am Chem Soc 96:6755–6757. doi:10.1021/ja00828a035

    Article  CAS  Google Scholar 

  60. Hvistendahl G, Williams DH (1975) Partitioning of Reverse Activation Energy Between Kinetic and Internal Energy in Reactions of Simple Organic Ions. J Chem Soc Perkin Trans 2:881–885. doi:10.1039/P29750000881

    Article  Google Scholar 

  61. Hvistendahl G, Uggerud E (1985) Secondary Isotope Effect on Kinetic Energy Release and Reaction Symmetry. Org Mass Spectrom 20:541–542. doi:10.1002/oms.1210200902

    Article  CAS  Google Scholar 

  62. Kim KC, Beynon JH, Cooks RG (1974) Energy Partitioning by Mass Spectrometry. Chloroalkanes and Chloroalkenes. J Chem Phys 61:1305–1314. doi:10.1063/1.1682054

    Article  CAS  Google Scholar 

  63. Haney MA, Franklin JL (1968) Correlation of Excess Energies of Electron Impact Dissociations with the Translational Energies of the Products. J Chem Phys 48:4093–4097. doi:10.1063/1.1669743

    Article  CAS  Google Scholar 

  64. Cooks RG, Williams DH (1968) The Relative Rates of Fragmentation of Benzoyl Ions Generated upon Electron Impact From Different Precursors. Chem Commun:627–629. doi:10.1039/C19680000627

  65. Lin YN, Rabinovitch BS (1970) Degrees of Freedom Effect and Internal Energy Partitioning Upon Ion Decomposition. J Phys Chem 74:1769–1775. doi:10.1021/j100703a019

    Article  CAS  Google Scholar 

  66. Bente PF III, McLafferty FW, McAdoo DJ, Lifshitz C (1975) Internal Energy of Product Ions Formed in Mass Spectral Reactions. The Degrees of Freedom Effect. J Phys Chem 79:713–721. doi:10.1021/j100574a011

    Article  CAS  Google Scholar 

  67. Todd JFJ (1995) Recommendations for Nomenclature and Symbolism for Mass Spectroscopy Including an Appendix of Terms Used in Vacuum Technology. Int J Mass Spectrom Ion Proc 142:211–240. doi:10.1016/0168-1176(95)93811-F

    Article  CAS  Google Scholar 

  68. Robinson PJ, Holbrook KA (1972) Unimolecular Reactions. In: Unimolecular Reactions. Wiley, London

    Google Scholar 

  69. Ingemann S, Hammerum S, Derrick PJ, Fokkens RH, Nibbering NMM (1989) Energy-Dependent Reversal of Secondary Isotope Effects on Simple Cleavage Reactions: Tertiary Amine Radical Cations with Deuterium at Remote Positions. Org Mass Spectrom 24:885–889. doi:10.1002/oms.1210241006

    Article  CAS  Google Scholar 

  70. Lowry TH, Schueller-Richardson K (1976) Isotope Effects. In: Mechanism and Theory in Organic Chemistry. Harper and Row, New York

    Google Scholar 

  71. Stringer MB, Underwood DJ, Bowie JH, Allison CE, Donchi KF, Derrick PJ (1992) Is the McLafferty Rearrangement of Ketones Concerted or Stepwise? The Application of Kinetic Isotope Effects. Org Mass Spectrom 27:270–276. doi:10.1002/oms.1210270319

    Article  CAS  Google Scholar 

  72. Derrick PJ (1983) Isotope Effects in Fragmentation. Mass Spectrom Rev 2:285–298. doi:10.1002/mas.1280020204

    Article  CAS  Google Scholar 

  73. Hvistendahl G, Uggerud E (1986) Deuterium Isotope Effects and Mechanism of the Gas-Phase Reaction [C3H7]+ -> [C3H5]+ + H2. Org Mass Spectrom 21:347–350. doi:10.1002/oms.1210210609

    Article  CAS  Google Scholar 

  74. Howe I, McLafferty FW (1971) Unimolecular Decomposition of Toluene and Cycloheptatriene Molecular Ions. Variation of the Degree of Scrambling and Isotope Effect with Internal Energy. J Am Chem Soc 93:99–105. doi:10.1021/ja00730a019

    Article  Google Scholar 

  75. Bertrand M, Beynon JH, Cooks RG (1973) Isotope Effects Upon Hydrogen Atom Loss from Molecular Ions. Org Mass Spectrom 7:193–201. doi:10.1002/oms.1210070209

    Article  CAS  Google Scholar 

  76. Lau AYK, Solka BH, Harrison AG (1974) Isotope Effects and H/D Scrambling in the Fragmentation of Labeled Propenes. Org Mass Spectrom 9:555–557. doi:10.1002/oms.1210090602

    Article  CAS  Google Scholar 

  77. Benoit FM, Harrison AG (1976) Hydrogen Migrations in Mass Spectrometry. I. The Loss of Olefin From Phenyl-n-Propyl Ether Following Electron Impact Ionization and Chemical Ionization. Org Mass Spectrom 11:599–608. doi:10.1002/oms.1210110606

    Article  CAS  Google Scholar 

  78. Veith HJ, Gross JH (1991) Alkene Loss From Metastable Methyleneimmonium Ions: Unusual Inverse Secondary Isotope Effect in Ion-Neutral Complex Intermediate Fragmentations. Org Mass Spectrom 26:1097–1105. doi:10.1002/oms.1210261214

    Article  CAS  Google Scholar 

  79. Ingemann S, Kluft E, Nibbering NMM, Allison CE, Derrick PJ, Hammerum S (1991) Time-Dependence of the Isotope Effects in the Unimolecular Dissociation of Tertiary Amine Molecular Ions. Org Mass Spectrom 26:875–881. doi:10.1002/oms.1210261013

    Article  CAS  Google Scholar 

  80. Nacson S, Harrison AG (1985) Dependence of Secondary Hydrogen/Deuterium Isotope Effects on Internal Energy. Org Mass Spectrom 20:429–430

    CAS  Google Scholar 

  81. Ingemann S, Hammerum S, Derrick PJ (1988) Secondary Hydrogen Isotope Effects on Simple Cleavage Reactions in the Gas Phase: The α-Cleavage of Tertiary Amine Cation Radicals. J Am Chem Soc 110:3869–3873. doi:10.1021/ja00220a024

    Article  CAS  Google Scholar 

  82. Rosenstock HM (1976) The Measurement of Ionization and Appearance Potentials. Int J Mass Spectrom Ion Phys 20:139–190. doi:10.1016/0020-7381(76)80149-0

    Article  CAS  Google Scholar 

  83. Urban B, Bondybey VE (2001) Multiphoton Photoelectron Spectroscopy: Watching Molecules Dissociate. Phys Chem Chem Phys 3:1942–1944. doi:10.1039/b102772g

    Article  CAS  Google Scholar 

  84. Barfield AF, Wahrhaftig AL (1964) Determination of Appearance Potentials by the Critical Slope Method. J Chem Phys 41:2947–2948. doi:10.1063/1.1726381

    Article  Google Scholar 

  85. Nicholson AJC (1958) Measurement of Ionization Potentials by Electron Impact. J Chem Phys 29:1312–1318. doi:10.1063/1.1744714

    Article  CAS  Google Scholar 

  86. Levin RD, Lias SG (1982) Ionization Potential and Appearance Potential Measurements, 1971–1981. National Standard Reference Data Series 71:634 pp

    Google Scholar 

  87. Harris FM, Beynon JH (1985) Photodissociation in beams: organic ions. In: Bowers MT (ed) Gas Phase Ion Chemistry – Ions and Light. Academic Press, New York

    Google Scholar 

  88. Dunbar RC (1979) Ion photodissociation. In: Bowers MT (ed) Gas Phase Ion Chemistry. Academic Press, New York

    Google Scholar 

  89. Maeda K, Semeluk GP, Lossing FP (1968) A Two-Stage Double-Hemispherical Electron Energy Selector. Int J Mass Spectrom Ion Phys 1:395–407. doi:10.1016/0020-7381(68)85015-6

    Article  Google Scholar 

  90. Traeger JC, McLoughlin RG (1978) A Photoionization Study of the Energetics of the C7H7 + Ion Formed from C7H8 Precursors. Int J Mass Spectrom Ion Phys 27:319–333. doi:10.1016/0020-7381(78)80040-0

    Article  CAS  Google Scholar 

  91. Boesl U (2000) Laser Mass Spectrometry for Environmental and Industrial Chemical Trace Analysis. J Mass Spectrom 35:289–304. doi:10.1002/(SICI)1096-9888(200003)35:3<289::AID-JMS960>3.0.CO;2-Y

    Article  CAS  Google Scholar 

  92. Wendt KDA (2002) The New Generation of Resonant Laser Ionization Mass Spectrometers: Becoming Competitive for Selective Atomic Ultra-Trace Determination? Eur J Mass Spectrom 8:273–285. doi:10.1255/ejms.501

    Article  CAS  Google Scholar 

  93. Matsumoto J, Misawa K, Ishiuchi SI, Suzuki T, Hayashi SI, Fujii M (2007) On-Site and Real-Time Mass Spectrometer Utilizing the Resonance-Enhanced Multiphoton Ionization Technique. Shinku 50:241–245. doi:10.3131/jvsj.50.241

    Article  CAS  Google Scholar 

  94. Thanner R, Oser H, Grotheer HH (1998) Time-Resolved Monitoring of Aromatic Compounds in an Experimental Incinerator Using an Improved Jet-Resonance-Enhanced Multi-Photon Ionization System Jet-REMPI. Eur Mass Spectrom 4:215–222. doi:10.1255/ejms.213

    Article  CAS  Google Scholar 

  95. Zenobi R, Zhan Q, Voumard P (1996) Multiphoton Ionization Spectroscopy in Surface Analysis and Laser Desorption Mass Spectrometry. Mikrochim Acta 124:273–281. doi:10.1007/BF01242825

    Article  CAS  Google Scholar 

  96. Weickhardt C, Grun C, Grotemeyer J (1998) Fundamentals and Features of Analytical Laser Mass Spectrometry with Ultrashort Laser Pulses. Eur Mass Spectrom 4:239–244. doi:10.1255/ejms.216

    Article  CAS  Google Scholar 

  97. Turner DW, Al Jobory MI (1962) Determination of Ionization Potentials by Photoelectron Energy Measurement. J Chem Phys 37:3007–3008. doi:10.1063/1.1733134

    Article  CAS  Google Scholar 

  98. Müller-Dethlefs K, Sander M, Schlag EW (1984) Two-Color Photoionization Resonance Spectroscopy of Nitric Oxide: Complete Separation of Rotational Levels of Nitrosyl Ion at the Ionization Threshold. Chem Phys Lett 112:291–294. doi:10.1016/0009-2614(84)85743-7

    Article  Google Scholar 

  99. Müller-Dethlefs K, Sander M, Schlag EW (1984) A Novel Method Capable of Resolving Rotational Ionic States by the Detection of Threshold Photoelectrons with a Resolution of 1.2 cm–1. Z Naturforsch A 39:1089–1091. doi:10.1515/zna-1984-1112

    Article  Google Scholar 

  100. Schlag EW (1998) ZEKE Spectroscopy. Cambridge University Press, Cambridge

    Google Scholar 

  101. Edqvist O, Lindholm E, Selin LE, Åsbrink L (1970) Photoelectron Spectrum of Molecular Oxygen. Phys Scr 1:25–30. doi:10.1088/0031-8949/1/1/004

    Article  CAS  Google Scholar 

  102. Zhu L, Johnson P (1991) Mass Analyzed Threshold Ionization Spectroscopy. J Chem Phys 94:5769–5771. doi:10.1063/1.460460

    Article  CAS  Google Scholar 

  103. Weickhardt C, Moritz F, Grotemeyer J (1997) Time-of-Flight Mass Spectrometry: State-of-the-Art in Chemical Analysis and Molecular Science. Mass Spectrom Rev 15:139–162. doi:10.1002/(SICI)1098-2787(1996)15:3<139::AID-MAS1>3.0.CO;2-J

    Article  Google Scholar 

  104. Gunzer F, Grotemeyer J (2002) New Features in the Mass Analyzed Threshold Ionization (MATI) Spectra of Alkyl Benzenes. Phys Chem Chem Phys 4:5966–5972. doi:10.1039/B208283G

    Article  CAS  Google Scholar 

  105. Peng X, Kong W (2002) Zero Energy Kinetic Electron and Mass-Analyzed Threshold Ionization Spectroscopy of Na×(NH3)n (n = 1, 2, and 4) Complexes. J Chem Phys 117:9306–9315. doi:10.1063/1.1516796

    Article  CAS  Google Scholar 

  106. Haines SR, Dessent CEH, Müller-Dethlefs K (1999) Mass Analyzed Threshold Ionization of Phenol×CO: Intermolecular Binding Energies of a Hydrogen-Bonded Complex. J Chem Phys 111:1947–1954. doi:10.1063/1.479463

    Article  CAS  Google Scholar 

  107. Gleiter R, Heilbronner E, Hornung V (1972) Applications of Photoelectron Spectroscopy. 28. Photoelectron Spectra of Azabenzenes and Azanaphthalenes. I. Pyridine, Diazines, S-Triazine, and S-Tetrazine. Helv Chim Acta 55:255–274. doi:10.1002/hlca.19720550130

    Article  CAS  Google Scholar 

  108. Lavanchy A, Houriet R, Gäumann T (1978) The Mass Spectrometric Fragmentation of N-Heptane. Org Mass Spectrom 13:410–416. doi:10.1002/oms.1210130709

    Article  CAS  Google Scholar 

  109. Meisels GG, Chen CT, Giessner BG, Emmel RH (1972) Energy-Deposition Functions in Mass Spectrometry. J Chem Phys 56:793–800. doi:10.1063/1.1677233

    Article  CAS  Google Scholar 

  110. Herman JA, Li YH, Harrison AG (1982) Energy Dependence of the Fragmentation of Some Isomeric C6H12 +. Ions. Org Mass Spectrom 17:143–150. doi:10.1002/oms.1210170309

    Article  CAS  Google Scholar 

  111. Lindinger W, Jordan A (1998) Proton-Transfer-Reaction Mass Spectrometry (PTR-MS): On-line Monitoring of Volatile Organic Compounds at pptv Levels. Chem Soc Rev 27:347–354. doi:10.1039/a827347z

    Article  CAS  Google Scholar 

  112. Blake RS, Monks PS, Ellis AM (2009) Proton-Transfer Reaction Mass Spectrometry. Chem Rev 109:861–896. doi:10.1021/cr800364q

    Article  CAS  Google Scholar 

  113. Lias SG, Liebman JF, Levin RD (1984) Evaluated Gas Phase Basicities and Proton Affinities of Molecules; Heats of Formation of Protonated Molecules. J Phys Chem Ref Data 13:695–808. doi:10.1063/1.555719

    Article  CAS  Google Scholar 

  114. Harrison AG (1997) The Gas-Phase Basicities and Proton Affinities of Amino Acids and Peptides. Mass Spectrom Rev 16:201–217. doi:10.1002/(SICI)1098-2787(1997)16:4<201::AID-MAS3>3.0.CO;2-L

    Article  CAS  Google Scholar 

  115. Kukol A, Strehle F, Thielking G, Grützmacher HF (1993) Methyl Group Effect on the Proton Affinity of Methylated Acetophenones Studied by Two Mass Spectrometric Techniques. Org Mass Spectrom 28:1107–1110. doi:10.1002/oms.1210281021

    Article  CAS  Google Scholar 

  116. McMahon TB (2000) Thermochemical Ladders: Scaling the Ramparts of Gaseous Ion Energetics. Int J Mass Spectrom 200:187–199. doi:10.1016/S1387-3806(00)00308-0

    Article  CAS  Google Scholar 

  117. Lias SG, Bartmess JE, Liebman JF, Holmes JL, Levin RD, Mallard WG (1988) Gas-Phase Ion and Neutral Thermochemistry. J Phys Chem Ref Data 17(Suppl 1):861pp

    Google Scholar 

  118. Talrose VL, Ljubimova AK (1998) Secondary Processes in the Ion Source of a Mass Spectrometer (Presented by Academician NN Semenov 27 VIII 1952) – Reprinted from Report of the Soviet Academy of Sciences, Vol LXXXVI, -N5 (1952). J Mass Spectrom 33:502–504

    Article  Google Scholar 

  119. Munson MSB (2000) Development of Chemical Ionization Mass Spectrometry. Int J Mass Spectrom 200:243–251. doi:10.1016/S1387-3806(00)00301-8

    Article  CAS  Google Scholar 

  120. Schalley CA, Springer A (2009) Mass Spectrometry and Gas-Phase Chemistry of Non-Covalent Complexes. Wiley, Hoboken

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gross, J.H. (2017). Principles of Ionization and Ion Dissociation. In: Mass Spectrometry. Springer, Cham. https://doi.org/10.1007/978-3-319-54398-7_2

Download citation

Publish with us

Policies and ethics