Skip to main content

Electrospray Ionization

  • Chapter
  • First Online:
Book cover Mass Spectrometry

Abstract

  • Electrospray – a method of ion formation at atmospheric pressure

  • Interfacing atmospheric pressure ionization to analyzer high vacuum

  • Spraying of electrolytic solutions by action of an electrostatic field

  • Processes of ion liberation from electrolytic solutions

  • Formation of multiply charged ions and charge deconvolution

  • Small molecules analysis by electrospray ionization

  • High-mass and high-polarity capabilities of electrospray ionization

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rossi DT, Sinz MW (eds) (2002) Mass Spectrometry in Drug Discovery. Marcel Dekker, New York

    Google Scholar 

  2. Schalley CA (ed) (2003) Modern Mass Spectrometry. Springer, New York

    Google Scholar 

  3. Ardrey RE (2003) Liquid Chromatography-Mass Spectrometry – An Introduction. Wiley, Chichester

    Book  Google Scholar 

  4. Siuzdak G (2006) The Expanding Role of Mass Spectrometry in Biotechnology. MCC Press, San Diego

    Google Scholar 

  5. Lehmann WD (1996) Massenspektrometrie in der Biochemie. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  6. Dole RB (ed) (1997) Electrospray Ionization Mass Spectrometry – Fundamentals, Instrumentation and Applications. Wiley, Chichester. doi:10.17226/5702

    Google Scholar 

  7. Roboz J (1999) Mass Spectrometry in Cancer Research. CRC Press, Boca Raton. doi:10.1089/apc.1999.13.57

    Google Scholar 

  8. Chapman JR (ed) (2000) Mass Spectrometry of Proteins and Peptides. Humana Press, Totowa

    Google Scholar 

  9. Pramanik BN, Ganguly AK, Gross ML (eds) (2002) Applied Electrospray Mass Spectrometry. Marcel Dekker, New York

    Google Scholar 

  10. Cole RB (ed) (2010) Electrospray and MALDI Mass Spectrometry: Fundamentals, Instrumentation, Practicalities, and Biological Applications. Wiley, Hoboken

    Google Scholar 

  11. Lehmann WD (2010) Protein Phosphorylation Analysis by Electrospray Mass Spectrometry: A Guide to Concepts and Practice. Royal Society of Chemistry, Cambridge. doi:10.1007/s00265-010-1026-9

    Google Scholar 

  12. Amad MH, Cech NB, Jackson GS, Enke CG (2000) Importance of Gas-Phase Proton Affinities in Determining the Electrospray Ionization Response for Analytes and Solvents. J Mass Spectrom 35:784–789. doi:10.1002/1096-9888(200007)35:7<784::AID-JMS17>3.0.CO;2-Q

    Article  CAS  Google Scholar 

  13. Schalley CA (2000) Supramolecular Chemistry Goes Gas Phase: The Mass Spectrometric Examination of Noncovalent Interactions in Host-Guest Chemistry and Molecular Recognition. Int J Mass Spectrom 194:11–39. doi:10.1016/S1387-3806(99)00243-2

    Article  CAS  Google Scholar 

  14. Cristoni S, Bernardi LR (2003) Development of New Methodologies for the Mass Spectrometry Study of Bioorganic Macromolecules. Mass Spectrom Rev 22:369–406. doi:10.1002/mas.10062

    Article  CAS  Google Scholar 

  15. Heck AJR, van den Heuvel RHH (2004) Investigation of Intact Protein Complexes by Mass Spectrometry. Mass Spectrom Rev 23:368–389. doi:10.1002/mas.10081

    Article  CAS  Google Scholar 

  16. Fenn JB, Mann M, Meng CK, Wong SF, Whithouse CM (1989) Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science 246:64–71. doi:10.1126/science.2675315

    Article  CAS  Google Scholar 

  17. Fenn JB, Mann M, Meng CK, Wong SF (1990) Electrospray Ionization – Principles and Practice. Mass Spectrom Rev 9:37–70. doi:10.1002/mas.1280090103

    Article  CAS  Google Scholar 

  18. Smith RD, Loo JA, Edmonds CG, Barinaga CJ, Udseth HR (1990) New Developments in Biochemical Mass Spectrometry: Electrospray Ionization. Anal Chem 62:882–899. doi:10.1021/ac00208a002

    Article  CAS  Google Scholar 

  19. Fenn JB (2003) Electrospray: Wings for Molecular Elephants (Nobel Lecture). Angew Chem, Int Ed 42:3871–3894. doi:10.1002/anie.200300605

    Article  CAS  Google Scholar 

  20. Fuerstenau SD, Benner WH (1995) Molecular Weight Determination of Megadalton DNA Electrospray Ions Using Charge Detection Time-of-Flight Mass Spectrometry. Rapid Commun Mass Spectrom 9:1528–1538. doi:10.1002/rcm.1290091513

    Article  CAS  Google Scholar 

  21. Fuerstenau SD, Benner WH, Thomas JJ, Brugidou C, Bothner B, Suizdak G (2001) Mass Spectrometry of an Intact Virus. Angew Chem Int Ed 40:541–544. doi:10.1002/1521-3773(20010202)40:3<541::AID-ANIE541>3.0.CO;2-K

    Article  CAS  Google Scholar 

  22. Felitsyn N, Peschke M, Kebarle P (2002) Origin and Number of Charges Observed on Multiply-Protonated Native Proteins Produced by ESI. Int J Mass Spectrom 219:39–62. doi:10.1016/S1387-3806(02)00588-2

    Article  CAS  Google Scholar 

  23. Colton R, D'Agostino A, Traeger JC (1995) Electrospray Mass Spectrometry Applied to Inorganic and Organometallic Chemistry. Mass Spectrom Rev 14:79–106. doi:10.1002/mas.1280140203

    Article  CAS  Google Scholar 

  24. Traeger JC (2000) Electrospray Mass Spectrometry of Organometallic Compounds. Int J Mass Spectrom 200:387–401. doi:10.1016/S1387-3806(00)00346-8

    Article  CAS  Google Scholar 

  25. Henderson W, McIndoe SJ (2005) Mass Spectrometry of Inorganic and Organometallic Compounds. Wiley, Chichester. doi:10.1002/cfg.467

    Book  Google Scholar 

  26. Poon GK, Bisset GMF, Mistry P (1993) Electrospray Ionization Mass Spectrometry for Analysis of Low-Molecular-Weight Anticancer Drugs and Their Analogs. J Am Soc Mass Spectrom 4:588–595. doi:10.1016/1044-0305(93)85020-X

    Article  CAS  Google Scholar 

  27. Winger BE, Light-Wahl KJ, Ogorzalek Loo RR, Udseth HR, Smith RD (1993) Observation and Implications of High Mass-to-Charge Ratio Ions from Electrospray Ionization Mass Spectrometry. J Am Soc Mass Spectrom 4:536–545. doi:10.1016/1044-0305(93)85015-P

    Article  CAS  Google Scholar 

  28. Wang Y, Schubert M, Ingendoh A, Franzen J (2000) Analysis of Non-Covalent Protein Complexes Up to 290 kDa Using Electrospray Ionization and Ion Trap Mass Spectrometry. Rapid Commun Mass Spectrom 14:12–17. doi:10.1002/(SICI)1097-0231(20000115)14:1<12::AID-RCM825>3.0.CO;2-7

    Article  Google Scholar 

  29. Sobott F, Hernández H, McCammon MG, Tito MA, Robinson CV (2002) A Tandem Mass Spectrometer for Improved Transmission and Analysis of Large Macromolecular Assemblies. Anal Chem 74:1402–1407. doi:10.1021/ac0110552

    Article  CAS  Google Scholar 

  30. Covey TR, Thomson BA, Schneider BB (2009) Atmospheric Pressure Ion Sources. Mass Spectrom Rev 28:870–897. doi:10.1002/mas.20246

    Article  CAS  Google Scholar 

  31. Horning EC, Horning MG, Carroll DI, Dzidic I, Stillwell RN (1973) New Picogram Detection System Based on a Mass Spectrometer with an External Ionization Source at Atmospheric Pressure. Anal Chem 45:936–943. doi:10.1021/ac60328a035

    Article  CAS  Google Scholar 

  32. Horning EC, Carroll DI, Dzidic I, Haegele KD, Horning MG, Stillwell RN (1974) Atmospheric Pressure Ionization (API) Mass Spectrometry. Solvent-Mediated Ionization of Samples Introduced in Solution and in a Liquid Chromatograph Effluent Stream. J Chromatogr Sci 12:725–729. doi:10.1093/chromsci/12.11.725

    Article  CAS  Google Scholar 

  33. Robb DB, Covey TR, Bruins AP (2000) Atmospheric Pressure Photoionization: an Ionization Method for Liquid Chromatography-Mass Spectrometry. Anal Chem 72:3653–3659. doi:10.1021/ac0001636

    Article  CAS  Google Scholar 

  34. Blakley CR, Carmody JJ, Vestal ML (1980) A New Soft Ionization Technique for Mass Spectrometry of Complex Molecules. J Am Chem Soc 102:5931–5933. doi:10.1021/ja00538a050

    Article  CAS  Google Scholar 

  35. Blakley CR, Vestal ML (1983) Thermospray Interface for Liquid Chromatography/Mass Spectrometry. Anal Chem 55:750–754. doi:10.1021/ac00255a036

    Article  CAS  Google Scholar 

  36. Vestal ML (1983) Studies of Ionization Mechanisms Involved in Thermospray LC-MS. Int J Mass Spectrom Ion Phys 46:193–196. doi:10.1016/0020-7381(83)80086-2

    Article  CAS  Google Scholar 

  37. Wilkes JG, Freeman JP, Heinze TM, Lay JO Jr, Vestal ML (1995) AC Corona-Discharge Aerosol-Neutralization Device Adapted to Liquid Chromatography/Particle Beam/Mass Spectrometry. Rapid Commun Mass Spectrom 9:138–142. doi:10.1002/rcm.1290090207

    Article  CAS  Google Scholar 

  38. Vestal ML (1984) High-Performance Liquid Chromatography-Mass Spectrometry. Science 226:275–281. doi:10.1126/science.6385251

    Article  CAS  Google Scholar 

  39. Evans CA Jr, Hendricks CD (1972) Electrohydrodynamic Ion Source for the Mass Spectrometry of Liquids. Rev Sci Inst 43:1527–1530. doi:10.1063/1.1685481

    Article  CAS  Google Scholar 

  40. Simons DS, Colby BN, Evans CA Jr (1974) Electrohydrodynamic Ionization Mass Spectrometry. Ionization of Liquid Glycerol and Nonvolatile Organic Solutes. Int J Mass Spectrom Ion Phys 15:291–302. doi:10.1016/0020-7381(74)85006-0

    Article  CAS  Google Scholar 

  41. Zeleny J (1917) Instability of Electrified Liquid Surfaces. Phys Rev 10:1–7. doi:10.1103/PhysRev.10.1

    Article  Google Scholar 

  42. Taylor GI (1964) Disintegration of Water Drops in an Electric Field. Proc Royal Soc London A 280:383–397. doi:10.1098/rspa.1964.0151

    Article  Google Scholar 

  43. Rayleigh L (1882) On the Equilibrium of Liquid Conducting Masses Charged with Electricity. Dublin Phil Mag J Sci (London/Edinburgh) 14:184–186. doi:10.1080/14786448208628425

    Article  Google Scholar 

  44. Dülcks T, Röllgen FW (1995) Ionization Conditions and Ion Formation in Electrohydrodynamic Mass Spectrometry. Int J Mass Spectrom Ion Proc 148:123–144. doi:10.1016/0168-1176(95)04250-O

    Article  Google Scholar 

  45. Dülcks T, Röllgen FW (1995) Ion Source for Electrohydrodynamic Mass Spectrometry. J Mass Spectrom 30:324–332. doi:10.1002/jms.1190300215

    Article  Google Scholar 

  46. Cook KD (1986) Electrohydrodynamic Mass Spectrometry. Mass Spectrom Rev 5:467–519. doi:10.1002/mas.1280050404

    Article  CAS  Google Scholar 

  47. Dole M, Mack LL, Hines RL, Mobley RC, Ferguson LD, Alice MB (1968) Molecular Beams of Macroions. J Chem Phys 49:2240–2249. doi:10.1063/1.1670391

    Article  CAS  Google Scholar 

  48. Dole M, Hines RL, Mack LL, Mobley RC, Ferguson LD, Alice MB (1968) Gas Phase Macroions. Macromolecules 1:96–97. doi:10.1021/ma60001a017

    Article  CAS  Google Scholar 

  49. Gieniec J, Mack LL, Nakamae K, Gupta C, Kumar V, Dole M (1984) Electrospray Mass Spectroscopy of Macromolecules: Application of an Ion-Drift Spectrometer. Biomed Mass Spectrom 11:259–268. doi:10.1002/bms.1200110602

    Article  CAS  Google Scholar 

  50. Yamashita M, Fenn JB (1984) Electrospray Ion Source. Another Variation on the Free-Jet Theme. J Phys Chem 88:4451–4459. doi:10.1021/j150664a002

    Article  CAS  Google Scholar 

  51. Yamashita M, Fenn JB (1984) Negative Ion Production with the Electrospray Ion Source. J Phys Chem 88:4671–4675. doi:10.1021/j150664a046

    Article  CAS  Google Scholar 

  52. Whitehouse CM, Robert RN, Yamashita M, Fenn JB (1985) Electrospray Interface for Liquid Chromatographs and Mass Spectrometers. Anal Chem 57:675–679. doi:10.1021/ac00280a023

    Article  CAS  Google Scholar 

  53. Bruins AP (1991) Mass Spectrometry with Ion Sources Operating at Atmospheric Pressure. Mass Spectrom Rev 10:53–77. doi:10.1002/mas.1280100104

    Article  CAS  Google Scholar 

  54. Kebarle P, Tang L (1993) From Ions in Solution to Ions in the Gas Phase – The Mechanism of Electrospray Mass Spectrometry. Anal Chem 65:972A–986A. doi:10.1021/ac00070a001

    CAS  Google Scholar 

  55. Karas M, Bahr U, Dülcks T (2001) Nano-Electrospray Ionization Mass Spectrometry: Addressing Analytical Problems Beyond Routine. Fresenius J Anal Chem 366:669–676. doi:10.1007/s002160051561

    Article  Google Scholar 

  56. Anacleto JF, Pleasance S, Boyd RK (1992) Calibration of Ion Spray Mass Spectra Using Cluster Ions. Org Mass Spectrom 27:660–666. doi:10.1002/oms.1210270603

    Article  CAS  Google Scholar 

  57. Hop CECA (1996) Generation of High Molecular Weight Cluster Ions by Electrospray Ionization; Implications for Mass Calibration. J Mass Spectrom 31:1314–1316. doi:10.1002/(SICI)1096-9888(199611)31:11<1314::AID-JMS429>3.0.CO;2-N

    Article  CAS  Google Scholar 

  58. Kantrowitz A, Grey J (1951) High Intensity Source for the Molecular Beam. I. Theoretical. Rev Sci Inst 22:328–332. doi:10.1063/1.1745921

    Article  CAS  Google Scholar 

  59. Fenn JB (2000) Mass Spectrometric Implications of High-Pressure Ion Sources. Int J Mass Spectrom 200:459–478. doi:10.1016/S1387-3806(00)00328-6

    Article  CAS  Google Scholar 

  60. Klee S, Derpmann V, Wissdorf W, Klopotowski S, Kersten H, Brockmann KJ, Benter T, Albrecht S, Bruins AP, Dousty F, Kauppila TJ, Kostiainen R, O'Brien R, Robb DB, Syage JA (2014) Are Clusters Important in Understanding the Mechanisms in Atmospheric Pressure Ionization? Part 1: Reagent Ion Generation and Chemical Control of Ion Populations. J Am Soc Mass Spectrom 25:1310–1321. doi:10.1007/s13361-014-0891-2

    Article  CAS  Google Scholar 

  61. Bruins AP, Covey TR, Henion JD (1987) Ion Spray Interface for Combined Liquid Chromatography/Atmospheric Pressure Ionization Mass Spectrometry. Anal Chem 59:2642–2646. doi:10.1021/ac00149a003

    Article  CAS  Google Scholar 

  62. Covey TR, Bruins AP, Henion JD (1988) Comparison of Thermospray and Ion Spray Mass Spectrometry in an Atmospheric Pressure Ion Source. Org Mass Spectrom 23:178–186. doi:10.1002/oms.1210230305

    Article  CAS  Google Scholar 

  63. Covey TR, Bonner RF, Shushan BI, Henion JD (1988) The Determination of Protein, Oligonucleotide, and Peptide Molecular Weights by Ion-Spray Mass Spectrometry. Rapid Commun Mass Spectrom 2:249–256. doi:10.1002/rcm.1290021111

    Article  CAS  Google Scholar 

  64. Ikonomou MG, Blades AT, Kebarle P (1991) Electrospray – Ion Spray: A Comparison of Mechanisms and Performance. Anal Chem 63:1989–1998. doi:10.1021/ac00018a017

    Article  CAS  Google Scholar 

  65. Smith RD, Barinaga CJ, Udseth HR (1988) Improved Electrospray Ionization Interface for Capillary Zone Electrophoresis-Mass Spectrometry. Anal Chem 60:1948–1952. doi:10.1021/ac00169a022

    Article  CAS  Google Scholar 

  66. Abian J (1999) The Coupling of Gas and Liquid Chromatography with Mass Spectrometry. J Mass Spectrom 34:157–168. doi:10.1002/(SICI)1096-9888(199903)34:3<157::AID-JMS804>3.0.CO;2-4

    Article  CAS  Google Scholar 

  67. Shaffer SA, Tang K, Anderson GA, Prior DC, Udseth HR, Smith RD (1997) A Novel Ion Funnel for Focusing Ions at Elevated Pressure Using Electrospray Ionization Mass Spectrometry. Rapid Commun Mass Spectrom 11:1813–1817. doi:10.1002/(SICI)1097-0231(19971030)11:16<1813::AID-RCM87>3.0.CO;2-D

    Article  CAS  Google Scholar 

  68. Shaffer SA, Prior DC, Anderson GA, Udseth HR, Smith RD (1998) An Ion Funnel Interface for Improved Ion Focusing and Sensitivity Using Electrospray Ionization Mass Spectrometry. Anal Chem 70:4111–4119. doi:10.1021/ac9802170

    Article  CAS  Google Scholar 

  69. Kim T, Tolmachev AV, Harkewicz R, Prior DC, Anderson G, Udseth HR, Smith RD, Bailey TH, Rakov S, Futrell JH (2000) Design and Implementation of a New Electrodynamic Ion Funnel. Anal Chem 72:2247–2255. doi:10.1021/ac991412x

    Article  CAS  Google Scholar 

  70. Ibrahim Y, Belov ME, Tolmachev AV, Prior DC, Smith RD (2007) Ion Funnel Trap Interface for Orthogonal Time-of-Flight Mass Spectrometry. Anal Chem 79:7845–7852. doi:10.1021/ac071091m

    Article  CAS  Google Scholar 

  71. Ibrahim YM, Belov ME, Liyu AV, Smith RD (2008) Automated Gain Control Ion Funnel Trap for Orthogonal Time-of-Flight Mass Spectrometry. Anal Chem 80:5367–5376. doi:10.1021/ac8003488

    Article  CAS  Google Scholar 

  72. Smith RD, Loo JA, Barinaga CJ, Edmonds CG, Udseth HR (1990) Collisional Activation and Collision-Activated Dissociation of Large Multiply Charged Polypeptides and Proteins Produced by Electrospray Ionization. J Am Soc Mass Spectrom 1:53–65. doi:10.1016/1044-0305(90)80006-9

    Article  CAS  Google Scholar 

  73. Harvey DJ (2000) Collision-Induced Fragmentation of Underivatized N-Linked Carbohydrates Ionized by Electrospray. J Mass Spectrom 35:1178–1190. doi:10.1002/1096-9888(200010)35:10<1178::AID-JMS46>3.0.CO;2-F

    Article  CAS  Google Scholar 

  74. Schmidt A, Bahr U, Karas M (2001) Influence of Pressure in the First Pumping Stage on Analyte Desolvation and Fragmentation in Nano-ESI MS. Anal Chem 71:6040–6046. doi:10.1021/ac010451h

    Article  CAS  Google Scholar 

  75. Jedrzejewski PT, Lehmann WD (1997) Detection of Modified Peptides in Enzymatic Digests by Capillary Liquid Chromatography/Electrospray Mass Spectrometry and a Programmable Skimmer CID Acquisition Routine. Anal Chem 69:294–301. doi:10.1021/ac9606618

    Article  CAS  Google Scholar 

  76. Weinmann W, Stoertzel M, Vogt S, Svoboda M, Schreiber A (2001) Tuning Compounds for Electrospray Ionization/in-Source Collision-Induced Dissociation and Mass Spectra Library Searching. J Mass Spectrom 36:1013–1023. doi:10.1002/jms.201

    Article  CAS  Google Scholar 

  77. Huddleston MJ, Bean MF, Carr SA (1993) Collisional Fragmentation of Glycopeptides by Electrospray Ionization LC/MS and LC/MS/MS: Methods for Selective Detection of Glycopeptides in Protein Digests. Anal Chem 65:877–884. doi:10.1021/ac00055a009

    Article  CAS  Google Scholar 

  78. Chen H, Tabei K, Siegel MM (2001) Biopolymer Sequencing Using a Triple Quadrupole Mass Spectrometer in the ESI Nozzle-Skimmer/Precursor Ion MS/MS Mode. J Am Soc Mass Spectrom 12:846–852. doi:10.1016/S1044-0305(01)00258-6

    Article  CAS  Google Scholar 

  79. Hoogland FG, Boon JJ (2009) Development of MALDI-MS and Nano-ESI-MS Methodology for the Full Identification of Poly(ethylene glycol) Additives in Artists' Acrylic Paints. Int J Mass Spectrom 284:66–71. doi:10.1016/j.ijms.2009.03.002

    Article  CAS  Google Scholar 

  80. Miao X-S, Metcalfe CD (2003) Determination of Carbamazepine and Its Metabolites in Aqueous Samples Using Liquid Chromatography-Electrospray Tandem Mass Spectrometry. Anal Chem 75:3731–3738. doi:10.1021/ac030082k

    Article  CAS  Google Scholar 

  81. Gross JH, Eckert A, Siebert W (2002) Negative-Ion Electrospray Mass Spectra of Carbon Dioxide-Protected N-Heterocyclic Anions. J Mass Spectrom 37:541–543. doi:10.1002/jms.302

    Article  CAS  Google Scholar 

  82. Wilm MS, Mann M (1994) Electrospray and Taylor-Cone Theory, Dole's Beam of Macromolecules at Last? Int J Mass Spectrom Ion Proc 136:167–180. doi:10.1016/0168-1176(94)04024-9

    Article  CAS  Google Scholar 

  83. Wilm M, Mann M (1996) Analytical Properties of the Nanoelectrospray Ion Source. Anal Chem 68:1–8. doi:10.1021/ac9509519

    Article  CAS  Google Scholar 

  84. Wilm M, Shevshenko A, Houthaeve T, Breit S, Schweigerer L, Fotsis T, Mann M (1996) Femtomole Sequencing of Proteins from Polyacrylamide Gels by Nano-Electrospray Mass Spectrometry. Nature 379:466–469. doi:10.1038/379466a0

    Article  CAS  Google Scholar 

  85. Juraschek R, Dülcks T, Karas M (1999) Nanoelectrospray – More Than Just a Minimized-Flow Electrospray Ionization Source. J Am Soc Mass Spectrom 10:300–308. doi:10.1016/S1044-0305(98)00157-3

    Article  CAS  Google Scholar 

  86. Guo M, Huang BX, Kim HY (2009) Conformational Changes in Akt1 Activation Probed by Amide Hydrogen/Deuterium Exchange and Nano-Electrospray Ionization Mass Spectrometry. Rapid Commun Mass Spectrom 23:1885–1891. doi:10.1002/rcm.4085

    Article  CAS  Google Scholar 

  87. Gibson GTT, Mugo SM, Oleschuk RD (2009) Nanoelectrospray Emitters: Trends and Perspective. Mass Spectrom Rev 28:918–936. doi:10.1002/mas.20248

    Article  CAS  Google Scholar 

  88. Valaskovic GA, Murphy JP, Lee MS (2004) Automated Orthogonal Control System for Electrospray Ionization. J Am Soc Mass Spectrom 15:1201–1215. doi:10.1016/j.jasms.2004.04.033

    Article  CAS  Google Scholar 

  89. Kebarle P, Verkerk UH (2009) Electrospray: From Ions in Solution to Ions in the Gas Phase, What We Know Now. Mass Spectrom Rev 28:898–917. doi:10.1002/mas.20247

    Article  CAS  Google Scholar 

  90. Cole RB (2000) Some Tenets Pertaining to Electrospray Ionization Mass Spectrometry. J Mass Spectrom 35:763–772. doi:10.1002/1096-9888(200007)35:7<763::AID-JMS16>3.0.CO;2-%23

    Article  CAS  Google Scholar 

  91. Kebarle P (2000) A Brief Overview of the Present Status of the Mechanisms Involved in Electrospray Mass Spectrometry. J Mass Spectrom 35:804–817. doi:10.1002/1096-9888(200007)35:7<804::AID-JMS22>3.0.CO;2-Q

    Article  CAS  Google Scholar 

  92. Marginean I, Nemes P, Parvin L, Vertes A (2006) How Much Charge Is There on a Pulsating Taylor Cone? Appl Phys Lett 89:064104-1-064104/3. doi:10.1063/1.2266889

    Article  CAS  Google Scholar 

  93. Nemes P, Marginean I, Vertes A (2007) Spraying Mode Effect on Droplet Formation and Ion Chemistry in Electrosprays. Anal Chem 79:3105–3116. doi:10.1021/ac062382i

    Article  CAS  Google Scholar 

  94. de la Mora JF, Van Berkel GJ, Enke CG, Cole RB, Martinez-Sanchez M, Fenn JB (2000) Electrochemical Processes in Electrospray Ionization Mass Spectrometry. J Mass Spectrom 35:939–952. doi:10.1002/1096-9888(200008)35:8<939::AID-JMS36>3.0.CO;2-V

    Article  CAS  Google Scholar 

  95. Van Berkel GJ (2000) Electrolytic Deposition of Metals on to the High-Voltage Contact in an Electrospray Emitter: Implications for Gas-Phase Ion Formation. J Mass Spectrom 35:773–783. doi:10.1002/1096-9888(200007)35:7<773::AID-JMS4>3.0.CO;2-6

    Article  Google Scholar 

  96. Schäfer M, Drayue M, Springer A, Zacharias P, Meerholz K (2007) Radical Cations in Electrospray Mass Spectrometry: Formation of Open-Shell Species, Examination of the Fragmentation Behavior in ESI-MSn and Reaction Mechanism Studies by Detection of Transient Radical Cations. Eur J Org Chem 2007:5162–5174. doi:10.1002/ejoc.200700199

    Article  CAS  Google Scholar 

  97. Gomez A, Tang K (1994) Charge and Fission of Droplets in Electrostatic Sprays. Phys Fluids 6:404–414. doi:10.1063/1.868037

    Article  CAS  Google Scholar 

  98. Duft D, Achtzehn T, Müller R, Huber BA, Leisner T (2003) Coulomb Fission. Rayleigh Jets from Levitated Microdroplets. Nature 421:128. doi:10.1038/421128a

    Article  CAS  Google Scholar 

  99. Grimm RL, Beauchamp JL (2005) Dynamics of Field-Induced Droplet Ionization: Time-Resolved Studies of Distortion, Jetting, and Progeny Formation from Charged and Neutral Methanol Droplets Exposed to Strong Electric Fields. J Phys Chem B 109:8244–8250. doi:10.1021/jp0450540

    Article  CAS  Google Scholar 

  100. Mack LL, Kralik P, Rheude A, Dole M (1970) Molecular Beams of Macroions, II. J Chem Phys 52:4977–4986. doi:10.1063/1.1672733

    Article  CAS  Google Scholar 

  101. Iribarne JV, Thomson BA (1976) On the Evaporation of Small Ions from Charged Droplets. J Chem Phys 64:2287–2294. doi:10.1063/1.432536

    Article  CAS  Google Scholar 

  102. Thomson BA, Iribarne JV (1979) Field-Induced Ion Evaporation from Liquid Surfaces at Atmospheric Pressure. J Chem Phys 71:4451–4463. doi:10.1063/1.438198

    Article  CAS  Google Scholar 

  103. Labowsky M, Fenn JB, de la Mora JF (2000) A Continuum Model for Ion Evaporation from a Drop: Effect of Curvature and Charge on Ion Solvation Energy. Anal Chim Acta 406:105–118. doi:10.1016/S0003-2670(99)00595-4

    Article  CAS  Google Scholar 

  104. Fenn JB (1993) Ion Formation from Charged Droplets: Roles of Geometry, Energy, and Time. J Am Soc Mass Spectrom 4:524–535. doi:10.1016/1044-0305(93)85014-O

    Article  CAS  Google Scholar 

  105. Fenn JB, Rosell J, Meng CK (1997) In Electrospray Ionization, How Much Pull Does an Ion Need to Escape Its Droplet Prison? J Am Soc Mass Spectrom 8:1147–1157. doi:10.1016/S1044-0305(97)00161-X

    Article  CAS  Google Scholar 

  106. Loo JA, Edmonds CG, Udseth HR, Smith RD (1990) Effect of Reducing Disulfide-Containing Proteins on Electrospray Ionization Mass Spectra. Anal Chem 62:693–698. doi:10.1021/ac00206a009

    Article  CAS  Google Scholar 

  107. Chowdhury SK, Katta V, Chait BT (1990) Probing Conformational Changes in Proteins by Mass Spectrometry. J Am Chem Soc 112:9012–9013. doi:10.1021/ja00180a074

    Article  CAS  Google Scholar 

  108. Nemes P, Goyal S, Vertes A (2008) Conformational and Noncovalent Complexation Changes in Proteins During Electrospray Ionization. Anal Chem 80:387–395. doi:10.1021/ac0714359

    Article  CAS  Google Scholar 

  109. Schmelzeisen-Redeker G, Bütfering L, Röllgen FW (1989) Desolvation of Ions and Molecules in Thermospray Mass Spectrometry. Int J Mass Spectrom Ion Proc 90:139–150. doi:10.1016/0168-1176(89)85004-9

    Article  CAS  Google Scholar 

  110. Williams ER (1996) Proton Transfer Reactivity of Large Multiply Charged Ions. J Mass Spectrom 31:831–842. doi:10.1002/(SICI)1096-9888(199608)31:8<831::AID-JMS392>3.0.CO;2-7

    Article  CAS  Google Scholar 

  111. Iavarone AT, Jurchen JC, Williams ER (2001) Supercharged Protein and Peptide Ions Formed by Electrospray Ionization. Anal Chem 73:1455–1460. doi:10.1021/ac001251t

    Article  CAS  Google Scholar 

  112. Iavarone AT, Williams ER (2002) Supercharging in Electrospray Ionization: Effects on Signal and Charge. Int J Mass Spectrom 219:63–72. doi:10.1016/S1387-3806(02)00587-0

    Article  CAS  Google Scholar 

  113. Iavarone AT, Williams ER (2003) Mechanism of Charging and Supercharging Molecules in Electrospray Ionization. J Am Chem Soc 125:2319–2327. doi:10.1021/ja021202t

    Article  CAS  Google Scholar 

  114. Youhnovski N, Matecko I, Samalikova M, Grandori R (2005) Characterization of Cytochrome c Unfolding by Nano-Electrospray Ionization Time-of-Flight and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Eur J Mass Spectrom 11:519–524. doi:10.1255/ejms.730

    Article  CAS  Google Scholar 

  115. Dobo A, Kaltashov IA (2001) Detection of Multiple Protein Conformational Ensembles in Solution Via Deconvolution of Charge-State Distributions in ESI-MS. Anal Chem 73:4763–4773. doi:10.1021/ac010713f

    Article  CAS  Google Scholar 

  116. Chapman JR, Gallagher RT, Barton EC, Curtis JM, Derrick PJ (1992) Advantages of High-Resolution and High-Mass Range Magnetic-Sector Mass Spectrometry for Electrospray Ionization. Org Mass Spectrom 27:195–203. doi:10.1002/oms.1210270308

    Article  CAS  Google Scholar 

  117. Cole RB, Harrata AK (1993) Solvent Effect on Analyte Charge State, Signal Intensity, and Stability in Negative Ion Electrospray Mass Spectrometry – Implications for the Mechanism of Negative Ion Formation. J Am Soc Mass Spectrom 4:546–556. doi:10.1016/1044-0305(93)85016-Q

    Article  CAS  Google Scholar 

  118. Straub RF, Voyksner RD (1993) Negative Ion Formation in Electrospray Mass Spectrometry. J Am Soc Mass Spectrom 4:578–587. doi:10.1016/1044-0305(93)85019-T

    Article  CAS  Google Scholar 

  119. Saf R, Mirtl C, Hummel K (1994) Electrospray Mass Spectrometry Using Potassium Iodide in Aprotic Organic Solvents for the Ion Formation by Cation Attachment. Tetrahedron Lett 35:6653–6656. doi:10.1016/S0040-4039(00)73459-9

    Article  CAS  Google Scholar 

  120. Cody RB, Tamura J, Musselman BD (1992) Electrospray Ionization/Magnetic Sector Mass Spectrometry: Calibration, Resolution, and Accurate Mass Measurements. Anal Chem 64:1561–1570. doi:10.1021/ac00038a012

    Article  CAS  Google Scholar 

  121. Mann M, Meng CK, Fenn JB (1989) Interpreting Mass Spectra of Multiply Charged Ions. Anal Chem 61:1702–1708. doi:10.1021/ac00190a023

    Article  CAS  Google Scholar 

  122. Labowsky M, Whitehouse CM, Fenn JB (1993) Three-Dimensional Deconvolution of Multiply Charged Spectra. Rapid Commun Mass Spectrom 7:71–84. doi:10.1002/rcm.1290070117

    Article  CAS  Google Scholar 

  123. Zhang Z, Marshall AG (1998) A Universal Algorithm for Fast and Automated Charge State Deconvolution of Electrospray Mass-to-Charge Ratio Spectra. J Am Soc Mass Spectrom 9:225–233. doi:10.1016/S1044-0305(97)00284-5

    Article  CAS  Google Scholar 

  124. Maleknia SD, Downard KM (2005) Charge Ratio Analysis Method to Interpret High Resolution Electrospray Fourier Transform-Ion Cyclotron Resonance Mass Spectra. Int J Mass Spectrom 246:1–9. doi:10.1016/j.ijms.2005.08.002

    Article  CAS  Google Scholar 

  125. Maleknia SD, Downard KM (2005) Charge Ratio Analysis Method: Approach for the Deconvolution of Electrospray Mass Spectra. Anal Chem 77:111–119. doi:10.1021/ac048961+

    Article  CAS  Google Scholar 

  126. Lu W, Callahan JH, Fry FS, Andrzejewski D, Musser SM, Harrington PD (2011) A Discriminant Based Charge Deconvolution Analysis Pipeline for Protein Profiling of Whole Cell Extracts Using Liquid Chromatography-Electrospray Ionization-Quadrupole Time-of-Flight Mass Spectrometry. Talanta 84:1180–1187. doi:10.1016/j.talanta.2011.03.024

    Article  CAS  Google Scholar 

  127. Maleknia SD, Green DC (2010) ECRAM Computer Algorithm for Implementation of the Charge Ratio Analysis Method to Deconvolute Electrospray Ionization Mass Spectra. Int J Mass Spectrom 290:1–8. doi:10.1016/j.ijms.2009.10.005

    Article  CAS  Google Scholar 

  128. Winkler R (2010) ESIprot: a Universal Tool for Charge State Determination and Molecular Weight Calculation of Proteins from Electrospray Ionization Mass Spectrometry Data. Rapid Commun Mass Spectrom 24:285–294. doi:10.1002/rcm.4384

    Article  CAS  Google Scholar 

  129. Wada Y (2016) Mass Spectrometry of Transferrin and Apolipoprotein C-III for Diagnosis and Screening of Congenital Disorder of Glycosylation. Glycoconjug J 33:297–307. doi:10.1007/s10719-015-9636-0

    Article  CAS  Google Scholar 

  130. Dobberstein P, Schroeder E (1993) Accurate Mass Determination of a High Molecular Weight Protein Using Electrospray Ionization with a Magnetic Sector Instrument. Rapid Commun Mass Spectrom 7:861–864. doi:10.1002/rcm.1290070916

    Article  CAS  Google Scholar 

  131. Haas MJ (1999) Fully Automated Exact Mass Measurements by High-Resolution Electrospray Ionization on a Sector Instrument. Rapid Commun Mass Spectrom 13:381–383. doi:10.1002/(SICI)1097-0231(19990315)13:5<381::AID-RCM495>3.0.CO;2-A

    Article  CAS  Google Scholar 

  132. Hofstadler SA, Griffey RH, Pasa-Tolic R, Smith RD (1998) The Use of a Stable Internal Mass Standard for Accurate Mass Measurements of Oligonucleotide Fragment Ions Using Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry with Infrared Multiphoton Dissociation. Rapid Commun Mass Spectrom 12:1400–1404. doi:10.1002/(SICI)1097-0231(19981015)12:19<1400::AID-RCM337>3.0.CO;2-T

    Article  CAS  Google Scholar 

  133. Stenson AC, Landing WM, Marshall AG, Cooper WT (2002) Ionization and Fragmentation of Humic Substances in Electrospray Ionization Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry. Anal Chem 74:4397–4409. doi:10.1021/ac020019f

    Article  CAS  Google Scholar 

  134. Makarov A, Denisov E, Kholomeev A, Balschun W, Lange O, Strupat K, Horning S (2006) Performance Evaluation of a Hybrid Linear Ion Trap/Orbitrap Mass Spectrometer. Anal Chem 78:2113–2120. doi:10.1021/ac0518811

    Article  CAS  Google Scholar 

  135. Scalf M, Westphall MS, Krause J, Kaufmann SL, Smith LM (1999) Controlling Charge States of Large Ions. Science 283:194–197. doi:10.1126/science.283.5399.194

    Article  CAS  Google Scholar 

  136. Krusemark CJ, Frey BL, Belshaw PJ, Smith LM (2009) Modifying the Charge State Distribution of Proteins in Electrospray Ionization Mass Spectrometry by Chemical Derivatization. J Am Soc Mass Spectrom 20:1617–1625. doi:10.1016/j.jasms.2009.04.017

    Article  CAS  Google Scholar 

  137. Scalf M, Westphall MS, Smith LM (2000) Charge Reduction Electrospray Mass Spectrometry. Anal Chem 72:52–60. doi:10.1021/ac990878c

    Article  CAS  Google Scholar 

  138. Ebeling DD, Westphall MS, Scalf M, Smith LM (2000) Corona Discharge in Charge Reduction Electrospray Mass Spectrometry. Anal Chem 72:5158–5161. doi:10.1021/ac000559h

    Article  CAS  Google Scholar 

  139. Ebeling DD, Scalf M, Westphall MS, Smith LM (2001) A Cylindrical Capacitor Ionization Source: Droplet Generation and Controlled Charge Reduction for Mass Spectrometry. Rapid Commun Mass Spectrom 15:401–405. doi:10.1002/rcm.245

    Article  CAS  Google Scholar 

  140. McLuckey SA, Stephenson JL Jr (1998) Ion/Ion Chemistry of High-Mass Multiply Charged Ions. Mass Spectrom Rev 17:369–407. doi:10.1002/(SICI)1098-2787(1998)17:6<369::AID-MAS1>3.0.CO;2-J

    Article  CAS  Google Scholar 

  141. Herron WJ, Goeringer DE, McLuckey SA (1996) Product Ion Charge State Determination Via Ion/Ion Proton Transfer Reactions. Anal Chem 68:257–262. doi:10.1021/ac950895b

    Article  CAS  Google Scholar 

  142. Schalley CA (ed) (2007) Analytical Methods in Supramolecular Chemistry. Wiley-VCH, New York. doi:10.5301/EJO.2008.2975

    Google Scholar 

  143. Ramanathan R (ed) (2009) Mass Spectrometry in Drug Metabolism and Pharmacokinetics. Wiley, Hoboken. doi:10.1109/TNS.2009.2019110

    Google Scholar 

  144. Schalley CA, Springer A (2009) Mass Spectrometry and Gas-Phase Chemistry of Non-Covalent Complexes. Wiley, Hoboken. doi:10.3762/bjoc.5.76

    Google Scholar 

  145. Banoub JH, Limbach PA (eds) (2009) Mass Spectrometry of Nucleosides and Nucleic Acids. CRC Press, Boca Raton. doi:10.1109/TNS.2009.2019110

    Google Scholar 

  146. Williams TTJ, Perreault H (2000) Selective Detection of Nitrated Polycyclic Aromatic Hydrocarbons by Electrospray Ionization Mass Spectrometry and Constant Neutral Loss Scanning. Rapid Commun Mass Spectrom 14:1474–1481. doi:10.1002/1097-0231(20000830)14:16<1474::AID-RCM46>3.0.CO;2-Z

    Article  CAS  Google Scholar 

  147. Zhu J, Cole RB (2000) Formation and Decompositions of Chloride Adduct Ions, [M+Cl]-, in Negative Ion Electrospray Ionization Mass Spectrometry. J Am Soc Mass Spectrom 11:932–941. doi:10.1016/S1044-0305(00)00164-1

    Article  CAS  Google Scholar 

  148. Yang C, Cole RB (2002) Stabilization of Anionic Adducts in Negative Ion Electrospray Mass Spectrometry. Anal Chem 74:985–991. doi:10.1021/ac0108818

    Article  CAS  Google Scholar 

  149. Schalley CA, Ghosh P, Engeser M (2004) Mass Spectrometric Evidence for Catenanes and Rotaxanes from Negative-ESI FT-ICR Tandem-MS Experiments. Int J Mass Spectrom 232:249–258. doi:10.1016/j.ijms.2004.02.003

    Article  CAS  Google Scholar 

  150. Truebenbach CS, Houalla M, Hercules DM (2000) Characterization of Isopoly Metal Oxyanions Using Electrospray Time-of-Flight Mass Spectrometry. J Mass Spectrom 35:1121–1127. doi:10.1002/1096-9888(200009)35:9<1121::AID-JMS40>3.0.CO;2-7

    Article  CAS  Google Scholar 

  151. Choi BK, Hercules DM, Houalla M (2000) Characterization of Polyphosphates by Electrospray Mass Spectrometry. Anal Chem 72:5087–5091. doi:10.1021/ac000044q

    Article  CAS  Google Scholar 

  152. Favaro S, Pandolfo L, Traldi P (1997) The Behavior of [Pt(Η3-Allyl)XP(C6H5)3] Complexes in Electrospray Ionization Conditions Compared with Those Achieved by Other Ionization Methods. Rapid Commun Mass Spectrom 11:1859–1866. doi:10.1002/(SICI)1097-0231(199711)11:17<1859::AID-RCM973>3.0.CO;2-P

    Article  CAS  Google Scholar 

  153. Feichtinger D, Plattner DA (1997) Direct Proof for MnV-Oxo-Salen Complexes. Angew Chem Int Ed 36:1718–1719. doi:10.1002/anie.199717181

    Article  CAS  Google Scholar 

  154. Løver T, Bowmaker GA, Henderson W, Cooney RP (1996) Electrospray Mass Spectrometry of Some Cadmium Thiophenolate Complexes and of a Thiophenolate Capped CdS Cluster. Chem Commun:683–685. doi:10.1039/CC9960000683

  155. Hinderling C, Feichtinger D, Plattner DA, Chen P (1997) A Combined Gas-Phase, Solution-Phase, and Computational Study of C-H Activation by Cationic Iridium(III) Complexes. J Am Chem Soc 119:10793–10804. doi:10.1021/ja970995u

    Article  CAS  Google Scholar 

  156. Reid GE, O'Hair RAJ, Styles ML, McFadyen WD, Simpson RJ (1998) Gas Phase Ion-Molecule Reactions in a Modified Ion Trap: H/D Exchange of Non-Covalent Complexes and Coordinatively Unsaturated Platinum Complexes. Rapid Commun Mass Spectrom 12:1701–1708. doi:10.1002/(SICI)1097-0231(19981130)12:22<1701::AID-RCM392>3.0.CO;2-S

    Article  CAS  Google Scholar 

  157. Volland MAO, Adlhart C, Kiener CA, Chen P, Hofmann P (2001) Catalyst Screening by Electrospray Ionization Tandem Mass Spectrometry: Hofmann Carbenes for Olefin Metathesis. Chem Eur J 7:4621–4632. doi:10.1002/1521-3765(20011105)7:21<4621::AID-CHEM4621>3.0.CO;2-C

    Article  CAS  Google Scholar 

  158. Jewett BN, Ramaley L, Kwak JCT (1999) Atmospheric Pressure Ionization Mass Spectrometry Techniques for the Analysis of Alkyl Ethoxysulfate Mixtures. J Am Soc Mass Spectrom 10:529–536. doi:10.1016/S1044-0305(99)00017-3

    Article  CAS  Google Scholar 

  159. Benomar SH, Clench MR, Allen DW (2001) The Analysis of Alkylphenol Ethoxysulphonate Surfactants by High-Performance Liquid Chromatography, Liquid Chromatography-Electrospray Ionisation-Mass Spectrometry and Matrix-Assisted Laser Desorption Ionisation-Mass Spectrometry. Anal Chim Acta 445:255–267. doi:10.1016/S0003-2670(01)01280-6

    Article  CAS  Google Scholar 

  160. Eichhorn P, Knepper TP (2001) Electrospray Ionization Mass Spectrometric Studies on the Amphoteric Surfactant Cocamidopropylbetaine. J Mass Spectrom 36:677–684. doi:10.1002/jms.170

    Article  CAS  Google Scholar 

  161. Levine LH, Garland JL, Johnson JV (2002) HPLC/ESI-Quadrupole Ion Trap Mass Spectrometry for Characterization and Direct Quantification of Amphoteric and Nonionic Surfactants in Aqueous Samples. Anal Chem 74:2064–2071. doi:10.1021/ac011154f

    Article  CAS  Google Scholar 

  162. Barco M, Planas C, Palacios O, Ventura F, Rivera J, Caixach J (2003) Simultaneous Quantitative Analysis of Anionic, Cationic, and Nonionic Surfactants in Water by Electrospray Ionization Mass Spectrometry with Flow Injection Analysis. Anal Chem 75:5179–5136. doi:10.1021/ac020708r

    Article  CAS  Google Scholar 

  163. Little DP, Chorush RA, Speir JP, Senko MW, Kelleher NL, McLafferty FW (1994) Rapid Sequencing of Oligonucleotides by High-Resolution Mass Spectrometry. J Am Chem Soc 116:4893–4897. doi:10.1021/ja00090a039

    Article  CAS  Google Scholar 

  164. Limbach PA, Crain PF, McCloskey JA (1995) Molecular Mass Measurement of Intact Ribonucleic Acids via Electrospray Ionization Quadrupole Mass Spectrometry. J Am Soc Mass Spectrom 6:27–39. doi:10.1016/1044-0305(94)00086-F

    Article  CAS  Google Scholar 

  165. Little DP, Thannhauser TW, McLafferty FW (1995) Verification of 50- to 100-Mer DNA and RNA Sequences with High-Resolution Mass Spectrometry. Proc Natl Acad Sci U S A 92:2318–2322. doi:10.1073/pnas.92.6.2318

    Article  CAS  Google Scholar 

  166. Hanson L, Fucini P, Ilag LL, Nierhaus KH, Robinson CV (2003) Dissociation of Intact Escherichia Coli Ribosomes in a Mass Spectrometer. Evidence for Conformational Change in Ribosome Elongation Factor G Complex. J Biol Chem 278:1259–1267. doi:10.1074/jbc.M208966200

    CAS  Google Scholar 

  167. De Bellis G, Salani G, Battaglia C, Pietta P, Rosti E, Mauri P (2000) Electrospray Ionization Mass Spectrometry of Synthetic Oligonucleotides Using 2-Propanol and Spermidine. Rapid Commun Mass Spectrom 14:243–249. doi:10.1002/(SICI)1097-0231(20000229)14:4<243::AID-RCM870>3.0.CO;2-F

    Article  Google Scholar 

  168. Greig M, Griffey RH (1995) Utility of Organic Bases for Improved Electrospray Mass Spectrometry of Oligonucleotides. Rapid Commun Mass Spectrom 9:97–102. doi:10.1002/rcm.1290090121

    Article  CAS  Google Scholar 

  169. Sannes-Lowery KA, Hofstadler SA (2003) Sequence Confirmation of Modified Oligonucleotides Using IRMPD in the External Ion Reservoir of an Electrospray Ionization Fourier Transform Ion Cyclotron Mass Spectrometer. J Am Soc Mass Spectrom 14:825–833. doi:10.1016/S1044-0305(03)00335-0

    Article  CAS  Google Scholar 

  170. Andersen TE, Kirpekar F, Haselmann KF (2006) RNA Fragmentation in MALDI Mass Spectrometry Studied by H/D-Exchange: Mechanisms of General Applicability to Nucleic Acids. J Am Soc Mass Spectrom 17:1353–1368. doi:10.1016/j.jasms.2006.05.018

    Article  CAS  Google Scholar 

  171. McLuckey SA, Van Berkel GJ, Glish GL (1992) Tandem Mass Spectrometry of Small, Multiply Charged Oligonucleotides. J Am Soc Mass Spectrom 3:60–70. doi:10.1016/1044-0305(92)85019-G

    Article  CAS  Google Scholar 

  172. Pfenninger A, Karas M, Finke B, Stahl B (2002) Structural Analysis of Underivatized Neutral Human Milk Oligosaccharides in the Negative Ion Mode by Nano-Electrospray MSn (Part 1: Methodology). J Am Soc Mass Spectrom 13:1331–1340. doi:10.1016/S1044-0305(02)00645-1

    Article  CAS  Google Scholar 

  173. Pfenninger A, Karas M, Finke B, Stahl B (2002) Structural Analysis of Underivatized Neutral Human Milk Oligosaccharides in the Negative Ion Mode by Nano-Electrospray MSn (Part 2: Application to Isomeric Mixtures). J Am Soc Mass Spectrom 13:1341–1348. doi:10.1016/S1044-0305(02)00646-3

    Article  CAS  Google Scholar 

  174. Weiskopf AS, Vouros P, Harvey DJ (1998) Electrospray Ionization-Ion Trap Mass Spectrometry for Structural Analysis of Complex N-Linked Glycoprotein Oligosaccharides. Anal Chem 70:4441–4447. doi:10.1021/ac980289r

    Article  CAS  Google Scholar 

  175. Metelmann W, Peter-Katalinic J, Müthing J (2001) Gangliosides from Human Granulocytes: A Nano-ESI QTOF Mass Spectrometry Fucosylation Study of Low Abundance Species in Complex Mixtures. J Am Soc Mass Spectrom 12:964–973. doi:10.1016/S1044-0305(01)00276-8

    Article  CAS  Google Scholar 

  176. van Duijn E, Bakkes PJ, Heeren RMA, van den Heuvel RHH, van Heerikhuizen H, van der Vies SM, Heck AJR (2005) Monitoring Macromolecular Complexes Involved in the Chaperonin-Assisted Protein Folding Cycle by Mass Spectrometry. Nat Methods 2:371–376. doi:10.1038/nmeth753

    Article  CAS  Google Scholar 

  177. Breuker K, McLafferty FW (2008) Stepwise Evolution of Protein Native Structure with Electrospray into the Gas Phase, 10–12 to 102 s. Proc Natl Acad Sci U S A 105:18145–18152. doi:10.1073/pnas.0807005105

    Article  CAS  Google Scholar 

  178. Jiang W, Winkler HDF, Schalley CA (2008) Integrative Self-Sorting: Construction of a Cascade-Stoppered Hetero[3]Rotaxane. J Am Chem Soc 130:13852–13853. doi:10.1021/ja806009d

    Article  CAS  Google Scholar 

  179. Jiang W, Schaefer A, Mohr PC, Schalley CA (2010) Monitoring Self-Sorting by Electrospray Ionization Mass Spectrometry: Formation Intermediates and Error-Correction During the Self-Assembly of Multiply Threaded Pseudorotaxanes. J Am Chem Soc 132:2309–2320. doi:10.1021/ja9101369

    Article  CAS  Google Scholar 

  180. Jiang W, Schalley CA (2010) Tandem Mass Spectrometry for the Analysis of Self-Sorted Pseudorotaxanes: The Effects of Coulomb Interactions. J Mass Spectrom 45:788–798. doi:10.1002/jms.1769

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gross, J.H. (2017). Electrospray Ionization. In: Mass Spectrometry. Springer, Cham. https://doi.org/10.1007/978-3-319-54398-7_12

Download citation

Publish with us

Policies and ethics