Skip to main content

Automatic Clustering of Malicious IP Flow Records Using Unsupervised Learning

  • Conference paper
  • First Online:
Enterprise Security (ES 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10131))

Included in the following conference series:

  • 945 Accesses

Abstract

Anomaly based intrusion detection systems classify network traffic into normal and malicious categories. The intrusion detection system raises an alert when maliciousness is detected in the traffic. A security administrator inspects these alerts and takes corrective action to protect the network from intrusions and unauthorized access. Manual inspection of the alerts is also necessary because anomaly based intrusion detection systems have a high false positive rate. The alerts can be in very large number and their manual inspection is a challenging task. We propose an extension for anomaly based intrusion detection system which automatically groups malicious IP flows into different attack clusters. Our technique creates attack clusters from a training set of unlabeled IP flows using unsupervised learning. Every attack cluster consists of malicious IP flows which are similar to each other. We analyze IP flows in every cluster and assign an attack label to them. After the clusters are created, an incoming malicious IP flow is compared with all clusters and the label of the closest cluster is assigned to the IP flow. The intrusion detection system uses labeled flows to raise consolidated anomaly alert for a set of similar IP flows. This approach significantly reduces the overall number of alerts and also generates a high-level map of attack population. We use unsupervised learning techniques for automatic clustering of IP flows. Unsupervised learning is advantageous over supervised learning because the availability of a labeled training set for supervised learning is not always guaranteed. Three unsupervised learning techniques, k-means, self-organizing maps (SOM) and DBSCAN are considered for clustering of malicious IP flows. We evaluated our technique on a flow-based data-set containing different types of malicious flows. Experimental results show that our scheme gives good performance and places majority of the IP flows in correct attack clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.plixer.com/support/netflow_v5.html.

  2. 2.

    https://cirt.net/Nikto2.

  3. 3.

    http://www.iss.net/security_center/reference/vulntemp/HTTP_WhiskerScan.htm.

  4. 4.

    http://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/SALITY.

  5. 5.

    https://en.wikipedia.org/wiki/Asprox_botnet.

  6. 6.

    http://contagiodump.blogspot.com/.

  7. 7.

    http://www.ntop.org/products/netflow/nprobe/.

  8. 8.

    http://www.cs.waikato.ac.nz/ml/weka/.

References

  • Alaidaros, H., Mahmuddin, M., Al Mazari, A.: An overview of flow-based and packet-based intrusion detection performance in high speed networks. In: Proceedings of the International Arab Conference on Information Technology (2011)

    Google Scholar 

  • Amoli, P.V., Hamalainen, T.: A real time unsupervised NIDS for detecting unknown and encrypted network attacks in high speed network. In: 2013 IEEE International Workshop on Measurements and Networking Proceedings (M&N), pp. 149–154. IEEE (2013)

    Google Scholar 

  • Bateni, M., Baraani, A., Ghorbani, A.: Using artificial immune system and fuzzy logic for alert correlation. IJ Netw. Secur. 15(3), 190–204 (2013)

    Google Scholar 

  • Benferhat, S., Boudjelida, A., Tabia, K., Drias, H.: An intrusion detection and alert correlation approach based on revising probabilistic classifiers using expert knowledge. Appl. Intell. 38(4), 520–540 (2013)

    Article  Google Scholar 

  • Birant, D., Kut, A.: St-DBSCAN: an algorithm for clustering spatial-temporal data. Data Knowl. Eng. 60(1), 208–221 (2007)

    Article  Google Scholar 

  • Bolzoni, D., Etalle, S., Hartel, P.H.: Panacea: automating attack classification for anomaly-based network intrusion detection systems. In: Kirda, E., Jha, S., Balzarotti, D. (eds.) RAID 2009. LNCS, vol. 5758, pp. 1–20. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04342-0_1

    Chapter  Google Scholar 

  • Boukhtouta, A., Mokhov, S.A., Lakhdari, N.-E., Debbabi, M., Paquet, J.: Network malware classification comparison using DPI and flow packet headers. J. Comput. Virol. Hacking Tech. 12, 69–100 (2015)

    Article  Google Scholar 

  • Chang, V., Kuo, Y.-H., Ramachandran, M.: Cloud computing adoption framework: a security framework for business clouds. Future Gener. Comput. Syst. 57, 24–41 (2016)

    Article  Google Scholar 

  • Chang, V., Ramachandran, M.: Towards achieving data security with the cloud computing adoption framework. IEEE Trans. Serv. Comput. 9(1), 138–151 (2016)

    Article  Google Scholar 

  • Claise, B., Trammell, B., Aitken, P. (eds.): Specification of the IP flow information export (IPFIX) protocol for the exchange of flow information. Technical report, STD 77, RFC 7011, September 2013

    Google Scholar 

  • Dharamkar, B., Singh, R.R.: Cyber-attack classification using improved ensemble technique based on support vector machine and neural network. Int. J. Comput. Appl. 103(11), 1–7 (2014)

    Google Scholar 

  • Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G., Vázquez, E.: Anomaly-based network intrusion detection: techniques, systems and challenges. Comput. Secur. 28(1), 18–28 (2009)

    Article  Google Scholar 

  • Ghahramani, Z.: Unsupervised learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) Advanced Lectures on Machine Learning, vol. 3176, pp. 72–112. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28650-9_5

    Chapter  Google Scholar 

  • Golling, M., Hofstede, R., Koch, R.: Towards multi-layered intrusion detection in high-speed networks. In: 2014 6th International Conference on Cyber Conflict (CyCon 2014), pp. 191–206. IEEE (2014)

    Google Scholar 

  • Haddadi, F., Khanchi, S., Shetabi, M., Derhami, V.: Intrusion detection and attack classification using feed-forward neural network. In: 2010 Second International Conference on Computer and Network Technology (ICCNT), pp. 262–266. IEEE (2010)

    Google Scholar 

  • Hastie, T., Tibshirani, R., Friedman, J.: Unsupervised learning. In: The Elements of Statistical Learning, pp. 1–101 (2009)

    Google Scholar 

  • Hoque, N., Bhuyan, M.H., Baishya, R.C., Bhattacharyya, D., Kalita, J.K.: Network attacks: taxonomy, tools and systems. J. Netw. Comput. Appl. 40, 307–324 (2014)

    Article  Google Scholar 

  • Hurtik, P., Hodakova, P., Perfilieva, I., Liberts, M., Asmuss, J.: Network attack detection and classification by the F-transform. In: 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6. IEEE (2015)

    Google Scholar 

  • Husak, M., Velan, P., Vykopal, J.: Security monitoring of http traffic using extended flows. In: 2015 10th International Conference on Availability, Reliability and Security (ARES), pp. 258–265. IEEE (2015)

    Google Scholar 

  • Jin, X., Han, J.: Partitional clustering. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, p. 766. Springer, Boston (2010)

    Google Scholar 

  • Koch, R.: Towards next-generation intrusion detection. In: 2011 3rd International Conference on Cyber Conflict (ICCC), pp. 1–18. IEEE (2011)

    Google Scholar 

  • Laskov, P., Düssel, P., Schäfer, C., Rieck, K.: Learning intrusion detection: supervised or unsupervised? In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 50–57. Springer, Heidelberg (2005). doi:10.1007/11553595_6

    Chapter  Google Scholar 

  • Li, B., Springer, J., Bebis, G., Gunes, M.H.: A survey of network flow applications. J. Netw. Comput. Appl. 36(2), 567–581 (2013)

    Article  Google Scholar 

  • Liao, H.-J., Lin, C.-H.R., Lin, Y.-C., Tung, K.-Y.: Intrusion detection system: a comprehensive review. J. Netw. Comput. Appl. 36(1), 16–24 (2013)

    Article  Google Scholar 

  • Nazeer, K.A., Sebastian, M.: Improving the accuracy and efficiency of the k-means clustering algorithm. In: Proceedings of the World Congress on Engineering, vol. 1, pp. 1–3 (2009)

    Google Scholar 

  • Pakhira, M.K.: Finding number of clusters before finding clusters. Procedia Technol. 4, 27–37 (2012)

    Article  Google Scholar 

  • Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware behavior using machine learning. J. Comput. Secur. 19(4), 639–668 (2011)

    Article  Google Scholar 

  • Rokach, L., Maimon, O.: Clustering methods. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 321–352. Springer, Heidelberg (2005). doi:10.1007/0-387-25465-X_15

    Chapter  Google Scholar 

  • Shrivastava, P., Gupta, H.: A review of density-based clustering in spatial data. Int. J. Adv. Comput. Res. (IJACR) 2, 200–202 (2012)

    Google Scholar 

  • Song, J., Takakura, H., Okabe, Y., Nakao, K.: Toward a more practical unsupervised anomaly detection system. Inf. Sci. 231, 4–14 (2013)

    Article  Google Scholar 

  • Sperotto, A., Pras, A.: Flow-based intrusion detection. In: 2011 IFIP/IEEE International Symposium on Integrated Network Management (IM), pp. 958–963. IEEE (2011)

    Google Scholar 

  • Sperotto, A., Sadre, R., Vliet, F., Pras, A.: A labeled data set for flow-based intrusion detection. In: Nunzi, G., Scoglio, C., Li, X. (eds.) IPOM 2009. LNCS, vol. 5843, pp. 39–50. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04968-2_4

    Chapter  Google Scholar 

  • Umer, M.F., Khiyal, M.S.H.: Classification of textual documents using learning vector quantization. Inf. Technol. J. 6(1), 154–159 (2007)

    Article  Google Scholar 

  • Van Hulle, M.M.: Self-organizing maps. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing, pp. 585–622. Springer, Heidelberg (2012). doi:10.1007/978-3-540-92910-9_19

    Chapter  Google Scholar 

  • Wang, L., Leckie, C., Ramamohanarao, K., Bezdek, J.: Automatically determining the number of clusters in unlabeled data sets. IEEE Trans. Knowl. Data Eng. 21(3), 335–350 (2009)

    Article  Google Scholar 

  • Wu, S.X., Banzhaf, W.: The use of computational intelligence in intrusion detection systems: a review. Appl. Soft Comput. 10(1), 1–35 (2010)

    Article  Google Scholar 

  • Xu, D., Tian, Y.: A comprehensive survey of clustering algorithms. Ann. Data Sci. 2(2), 165–193 (2015)

    Article  MathSciNet  Google Scholar 

  • Ram Naresh Yadav, B.V., Satyanarayana, B., Vasumathi, D.: A vector space model approach for web attack classification using machine learning technique. In: Satapathy, S.C., Raju, K.S., Mandal, J.K., Bhateja, V. (eds.) Proceedings of the Second International Conference on Computer and Communication Technologies. AISC, vol. 381, pp. 363–373. Springer, Heidelberg (2016). doi:10.1007/978-81-322-2526-3_38

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Fahad Umer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Umer, M.F., Sher, M. (2017). Automatic Clustering of Malicious IP Flow Records Using Unsupervised Learning. In: Chang, V., Ramachandran, M., Walters, R., Wills, G. (eds) Enterprise Security. ES 2015. Lecture Notes in Computer Science(), vol 10131. Springer, Cham. https://doi.org/10.1007/978-3-319-54380-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54380-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54379-6

  • Online ISBN: 978-3-319-54380-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics